【題目】如圖,四棱錐的底面是正方形,平面.

1)證明:平面;

2)若,求二面角的余弦值.

【答案】1)證明見解析(2

【解析】

1)由平面及底面是正方形可證得平面,,又由,即可求證;

2)以為原點,分別以所在的直線為x軸、y軸、z軸建立空間直角坐標系,由(1)可知為平面的一個法向量,求得平面的一個法向量,進而利用數(shù)量積求解即可

1)證明:因為平面,平面,

所以,

因為底面是正方形,所以,

,所以平面,

因為平面,所以,

又因為,平面,

所以平面

2)因為平面,底面為正方形,

所以,以為原點,分別以所在的直線為x軸、y軸、z軸建立空間直角坐標系(如圖所示),

,則,

因為,所以中點,所以,

所以,

由(1)得為平面的一個法向量,

設平面的一個法向量為,

,,,則,所以,

因此,

由圖可知二面角的大小為鈍角,

故二面角的余弦值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】201913日嫦娥四號探測器成功實現(xiàn)人類歷史上首次月球背面軟著陸,我國航天事業(yè)取得又一重大成就,實現(xiàn)月球背面軟著陸需要解決的一個關鍵技術問題是地面與探測器的通訊聯(lián)系.為解決這個問題,發(fā)射了嫦娥四號中繼星“鵲橋”,鵲橋沿著圍繞地月拉格朗日點的軌道運行.點是平衡點,位于地月連線的延長線上.設地球質(zhì)量為M,月球質(zhì)量為M,地月距離為R,點到月球的距離為r,根據(jù)牛頓運動定律和萬有引力定律,r滿足方程:

.

,由于的值很小,因此在近似計算中,則r的近似值為

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,過拋物線一點作兩條直線分別交拋物線于,,斜率存在且傾斜角互補時

值;

直線上的截距時,面積最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.

)證明:BD⊥PC

)若AD=4,BC=2,直線PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】明初出現(xiàn)了一大批杰出的騎兵將領,比如徐達、常遇春、李文忠、藍玉和朱棣.明初騎兵軍團擊敗了不可一世的蒙古騎兵,是當時世界上最強騎兵軍團.假設在明軍與元軍的某次戰(zhàn)役中,明軍有8位將領,善用騎兵的將領有5人;元軍有8位將領,善用騎兵的有4人.

1)現(xiàn)從明軍將領中隨機選取4名將領,求至多有3名是善用騎兵的將領的概率;

2)在明軍和元軍的將領中各隨機選取2人,為善用騎兵的將領的人數(shù),寫出的分布列,并求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在“創(chuàng)文創(chuàng)衛(wèi)”活動中,某機構(gòu)為了解一小區(qū)成年居民“吸煙與性別”是否有關.從該小區(qū)中隨機抽取200位成年居民,得到下邊列聯(lián)表:已知在全部200人中隨機抽取1人,抽到不吸煙的概率為0.75.

吸煙

不吸煙

合計

40

90

合計

200

(1)補充上面的列聯(lián)表,并判斷:能否有99.9%的把握認為“吸煙與性別”有關;

(2)用分層抽樣的方法從吸煙居民中選5人出來,然后再從中抽2人出來,給小區(qū)居民談談吸煙的危害性,求恰好抽到“一男一女”的概率.

參考公式: .

參考數(shù)據(jù):

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}的前n項和為Sn,若對任意正整數(shù)n,總存在正整數(shù)m,使得Snam,則稱數(shù)列{an}S數(shù)列

1S數(shù)列的任意一項是否可以寫成其某兩項的差?請說明理由.

2)①是否存在等差數(shù)列為S數(shù)列,若存在,請舉例說明;若不存在,請說明理由.

②是否存在正項遞增等比數(shù)列為S數(shù)列,若存在,請舉例說明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學大學畢業(yè)后,決定利用所學專業(yè)進行自主創(chuàng)業(yè),經(jīng)過市場調(diào)查,生產(chǎn)一小型電子產(chǎn)品需投入固定成本2萬元,每生產(chǎn)萬件,需另投入流動成本萬元,當年產(chǎn)量小于萬件時,(萬元);當年產(chǎn)量不小于7萬件時,(萬元).已知每件產(chǎn)品售價為6元,假若該同學生產(chǎn)的商品當年能全部售完.

1)寫出年利潤(萬年)關于年產(chǎn)量(萬件)的函數(shù)解析式;(注:年利潤=年銷售收入-固定成本-流動成本)

2)當年產(chǎn)量約為多少萬件時,該同學的這一產(chǎn)品所獲年利潤最大?最大年利潤是多少?

(取.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設整數(shù)數(shù)列{an}共有2n)項,滿足,且).

(1)當時,寫出滿足條件的數(shù)列的個數(shù);

(2)當時,求滿足條件的數(shù)列的個數(shù).

查看答案和解析>>

同步練習冊答案