【題目】設整數(shù)數(shù)列{an}共有2n)項,滿足,,且).

(1)當時,寫出滿足條件的數(shù)列的個數(shù);

(2)當時,求滿足條件的數(shù)列的個數(shù).

【答案】(1)8;(2).

【解析】

1)當確定時,可確定,再逆推可知種取法;再依據(jù)可知各有種取法;由于有關,當確定時,必然隨之確定,故根據(jù)分步乘法計數(shù)原理,可得數(shù)列個數(shù)為;(2)設,且,可推得:;又,可推得:;用表示中值為的項數(shù)可知的取法數(shù)為,再任意指定的值,有種,可知數(shù)列有個;再化簡,可得最終結(jié)果.

(1)時,,

確定時,有唯一確定解

,可知種取法

,則,則種取法

此時,也有種取法

,當確定時,隨之確定

故所有滿足條件的數(shù)列共有:

滿足條件的所有的數(shù)列的個數(shù)為

(2)設,則由

,則:

表示中值為的項數(shù)

由②可知也是中值為的項數(shù),其中

所以的取法數(shù)為

確定后,任意指定的值,有

由①式可知,應取,使得為偶數(shù)

這樣的的取法是唯一的,且確定了的值

從而數(shù)列唯一地對應著一個滿足條件的

所以滿足條件的數(shù)列共有

下面化簡

兩展開式右邊乘積中的常數(shù)項恰好為

因為,又的系數(shù)為

所以

所以滿足條件的數(shù)列共有

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】己知數(shù)列,首項,設該數(shù)列的前項的和為,且

1)求數(shù)列的通項公式;

2)若數(shù)列滿足,求數(shù)列的通項公式;

3)在第(2)小題的條件下,令是數(shù)列的前項和,若對恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代數(shù)學名著《九章算術(shù)》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應償還多少?已知牛、馬、羊的主人各應償還升, 升, 升,1斗為10升,則下列判斷正確的是( )

A. , , 依次成公比為2的等比數(shù)列,且

B. , , 依次成公比為2的等比數(shù)列,且

C. , , 依次成公比為的等比數(shù)列,且

D. , 依次成公比為的等比數(shù)列,且

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學生參加社會實踐活動,對某公司1月份至6月份銷售某種配件的銷售量及銷售單價進行了調(diào)查,銷售單價x和銷售量y之間的一組數(shù)據(jù)如下表所示:

月份

1

2

3

4

5

6

銷售單價(元)

9

9.5

10

10.5

11

8

銷售量(件)

11

10

8

6

5

14.2

(1)根據(jù)1至5月份的數(shù)據(jù),求出y關于x的回歸直線方程;

(2)若由回歸直線方程得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差不超過0.5元,則認為所得到的回歸直線方程是理想的,試問(1)中所得到的回歸直線方程是否理想?

(3)預計在今后的銷售中,銷售量與銷售單價仍然服從(1)中的關系,若該種機器配件的成本是2.5元/件,那么該配件的銷售單價應定為多少元才能獲得最大利潤?(注:利潤=銷售收入-成本).

參考公式:回歸直線方程,其中,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:圓心到直線的距離與圓的半徑之比為直線關于圓的距離比.

(1)設圓求過2,0的直線關于圓的距離比的直線方程;

(2)若圓軸相切于點0,3)且直線= 關于圓的距離比,求此圓的的方程;

(3)是否存在點,使過的任意兩條互相垂直的直線分別關于相應兩圓的距離比始終相等?若存在,求出相應的點點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的幾何體中,垂直于梯形所在的平面,的中點,,四邊形為矩形,線段于點.

(1)求證:平面;

(2)求二面角的正弦值;

(3)在線段上是否存在一點,使得與平面所成角的大小為?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位為促進職工業(yè)務技能提升,對該單位120名職工進行一次業(yè)務技能測試,測試項目共5項.現(xiàn)從中隨機抽取了10名職工的測試結(jié)果,將它們編號后得到它們的統(tǒng)計結(jié)果如下表(表1)所示(“√”表示測試合格,“×”表示測試不合格).

表1:

編號\測試項目

1

2

3

4

5

1

×

2

×

3

×

4

×

×

5

6

×

×

×

7

×

×

8

×

×

×

×

9

×

×

×

10

×

規(guī)定:每項測試合格得5分,不合格得0分.

(1)以抽取的這10名職工合格項的項數(shù)的頻率代替每名職工合格項的項數(shù)的概率.

①設抽取的這10名職工中,每名職工測試合格的項數(shù)為,根據(jù)上面的測試結(jié)果統(tǒng)計表,列出的分布列,并估計這120名職工的平均得分;

②假設各名職工的各項測試結(jié)果相互獨立,某科室有5名職工,求這5名職工中至少有4人得分不少于20分的概率;

(2)已知在測試中,測試難度的計算公式為,其中為第項測試難度,為第項合格的人數(shù),為參加測試的總?cè)藬?shù).已知抽取的這10名職工每項測試合格人數(shù)及相應的實測難度如下表(表2):

表2:

測試項目

1

2

3

4

5

實測合格人數(shù)

8

8

7

7

2

定義統(tǒng)計量,其中為第項的實測難度,為第項的預測難度().規(guī)定:若,則稱該次測試的難度預測合理,否則為不合理,測試前,預估了每個預測項目的難度,如下表(表3)所示:

表3:

測試項目

1

2

3

4

5

預測前預估難度

0.9

0.8

0.7

0.6

0.4

判斷本次測試的難度預估是否合理.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面上有個點,將每一個點染上紅色或藍色.從這個點中,任取個點,記個點顏色相同的所有不同取法總數(shù)為.

(1)若,求的最小值;

(2)若,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,為等邊三角形,平面平面.

(1)證明:平面平面;

(2)若,為線段的中點,求三棱錐的體積.

查看答案和解析>>

同步練習冊答案