12.從拋物線y2=16x上各點(diǎn)向x軸作垂線,其垂線段中點(diǎn)的軌跡為E.
(Ⅰ)求軌跡E的方程;
(Ⅱ)若過點(diǎn)P(3,2)的直線l與軌跡E相交于A、B兩點(diǎn),且點(diǎn)P是弦AB的中點(diǎn),求直線l的方程.

分析 (Ⅰ)先設(shè)出垂線段的中點(diǎn)為M(x,y),P(x0,y0)是拋物線上的點(diǎn),把它們坐標(biāo)之間的關(guān)系找出來,代入拋物線的方程即可;
(Ⅱ)利用點(diǎn)差法,求出直線的斜率,即可求出直線方程.

解答 解:(Ⅰ)設(shè)垂線段的中點(diǎn)M(x,y),P(x0,y0)是拋物線上的點(diǎn),D(x0,0),
因?yàn)镸是PD的中點(diǎn),所以x0=x,y=$\frac{1}{2}$y0,
有x0=x,y0=2y,
因?yàn)辄c(diǎn)P在拋物線上,所以y02=16x,即4y2=16x,
所以y2=4x,所求點(diǎn)M軌跡方程為:y2=4x.              …(5分)
(2)設(shè)A(x1,y1),B(x2,y2),則x1+x2=6,y1+y2=4,
因?yàn)锳、B兩點(diǎn)都在拋物線E上,則代入作差可得k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{4}{{y}_{1}+{y}_{2}}$=1   …(10分)
∴直線l的方程為:x-y-1=0                      …(12分)

點(diǎn)評 本題主要考查求軌跡方程的方法,考查點(diǎn)差法的運(yùn)用,利用拋物線的定義將到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離是關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.一元二次不等式x2-3x+ab<0(a>b)的解集為{x|1<x<c},則$\frac{{a}^{2}+^{2}}{a-b}$的最小值為(  )
A.$\sqrt{2}$B.4C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.給定下列命題,其中真命題的個(gè)數(shù)為:( 。
①已知a,b,m∈R,若am2<bm2,則a<b;
②“矩形的對角線相等”的逆命題;
③“若xy=0,則x、y中至少有一個(gè)為0”的否命題;
④如果將一組數(shù)據(jù)中的每一個(gè)數(shù)都加上同一個(gè)非零常數(shù),那么這組數(shù)據(jù)的平均數(shù)和方差都改變.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.將函數(shù)y=3sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{2}$個(gè)單位長度,所得圖象對應(yīng)的函數(shù)( 。
A.在區(qū)間($\frac{π}{12}$,$\frac{7π}{12}$)上單調(diào)遞減B.在區(qū)間($\frac{π}{12}$,$\frac{7π}{12}$)上單調(diào)遞增
C.在區(qū)間(-$\frac{π}{6}$,$\frac{π}{3}$)上單調(diào)遞減D.在區(qū)間(-$\frac{π}{6}$,$\frac{π}{3}$)上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.“α=30°”是“sinα=$\frac{1}{2}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知直線l1:2x-y+1=0,直線l2與l1關(guān)于直線y=-x對稱,則直線l2的方程為( 。
A.x-2y+1=0B.x+2y+1=0C.x-2y-1=0D.x+2y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若直線ax+by=r2與圓x2+y2=r2沒有公共點(diǎn),則點(diǎn)P(a,b)與圓的位置關(guān)系是( 。
A.在圓上B.在圓內(nèi)C.在圓外D.以上皆有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.曲線y=x2+1在點(diǎn)P(-1,2)處的切線方程為( 。
A.y=-x+3B.y=-2x+4C.y=-x+1D.y=-2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知圓C:x2+(y-1)2=9,直線l:x-my+m-2=0,且直線l與圓C相交于A、B兩點(diǎn).
(Ⅰ)若|AB|=4$\sqrt{2}$,求直線l的傾斜角;
(Ⅱ)若點(diǎn)P(2,1)滿足$\overrightarrow{AP}$=$\overrightarrow{PB}$,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案