分析 (Ⅰ)若|AB|=4$\sqrt{2}$,則圓心到直線的距離為$\sqrt{9-8}$=1,利用點(diǎn)到直線的距離公式,建立方程,即可求直線l的傾斜角;
(Ⅱ)若點(diǎn)P(2,1)滿足$\overrightarrow{AP}$=$\overrightarrow{PB}$,則P為AB的中點(diǎn),求出直線的斜率,即可求直線l的方程.
解答 解:(Ⅰ)若|AB|=4$\sqrt{2}$,則圓心到直線的距離為$\sqrt{9-8}$=1,
∴$\frac{|-2|}{\sqrt{1+{m}^{2}}}$=1,∴m=$±\sqrt{3}$,
∴直線的斜率為$±\frac{\sqrt{3}}{3}$,
∴直線l的傾斜角為30°或150°;
(Ⅱ)若點(diǎn)P(2,1)滿足$\overrightarrow{AP}$=$\overrightarrow{PB}$,則P為AB的中點(diǎn),
∵kCP=0,∴直線l的斜率不存在,
∴直線l的方程為x=2.
點(diǎn)評(píng) 此題考查了直線與圓相交的性質(zhì),涉及的知識(shí)有:圓的標(biāo)準(zhǔn)方程,點(diǎn)到直線的距離公式,垂徑定理,以及勾股定理的運(yùn)用,當(dāng)直線與圓相交時(shí),常常根據(jù)垂徑定理由垂直得中點(diǎn),進(jìn)而再由弦心距,圓的半徑及弦長(zhǎng)的一半,利用勾股定理解決問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=lgx2,g(x)=2lgx | B. | f(x)=$\sqrt{x+2}$•$\sqrt{x-2}$,g(x)=$\sqrt{(x+2)(x-2)}$ | ||
C. | f(x)=x-2,g(x)=$\sqrt{({x-2)}^{2}}$ | D. | f(x)=lgx-2,g(x)=lg$\frac{x}{100}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{a}$<$\frac{1}$ | B. | a2>ab | C. | $\frac{1}{{a{b^2}}}$>$\frac{1}{{{a^2}b}}$ | D. | a2>b2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-4,0),(4,0) | B. | (-3,0),(3,0) | C. | (0,-4),(0,4) | D. | (0,-3),(0,3) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com