【題目】已知橢圓的方程是,雙曲線的左右焦點分別為的左右頂點,而的左右頂點分別是的左右焦點.

(1)求雙曲線的方程;

(2)若直線與雙曲線恒有兩個不同的交點,且的兩個交點AB滿足,求的取值范圍.

【答案】1;(2

【解析】

試題(1)由橢圓方程中讀出其長軸長,焦距長,根據(jù)題意得出雙曲線的長軸長,和焦距長,即可求出雙曲線方程.(2)因為直線l與兩曲線均有兩個不同交點,故聯(lián)立方程后整理出的一元二次方程均有兩根,即判別式均大于0,再根據(jù)向量數(shù)量積公式列出關(guān)于k 的不等式,三個不等式取交集.

試題解析:(1)設(shè)雙曲線的方程為,由橢圓的方程知,其長軸長為4,焦距長為,則由題意知雙曲線,,所以,故的方程為

2)將代入,整理得,由直線與橢圓恒有兩個不同的交點得,

代入,整理得,由直線與雙曲線恒有兩個不同的交點得,解得

解此不等式得

、

k的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高三年級有500名學(xué)生,為了了解數(shù)學(xué)科的學(xué)習(xí)情況,現(xiàn)從中隨機抽出若干名學(xué)生在一次測試中的數(shù)學(xué)成績,制成如下頻率分布表:

分組

頻數(shù)

頻率

12

4

合計

根據(jù)上面圖表,求處的數(shù)值

在所給的坐標系中畫出的頻率分布直方圖;

根據(jù)題中信息估計總體平均數(shù),并估計總體落在中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠銷售部以箱為單位銷售某種零件,每箱的定價為200元,低于100箱按原價銷售;不低于100箱通過雙方議價,買方能以優(yōu)惠成交的概率為0.6,以優(yōu)惠成交的概率為0.4.

(1)甲、乙兩單位都要在該廠購買150箱這種零件,兩單位各自達成的成交價相互獨立,求甲單位優(yōu)惠比例不低于乙單位優(yōu)惠比例的概率;

(2)某單位需要這種零件650箱,求購買總價的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個命題:

的極值點,則”的逆命題為真命題;

“平面向量,的夾角是鈍角”的充分不必要條件是;

若命題,則

命題“,使得”的否定是:“,均有”.其中不正確的個數(shù)是  

A. 3B. 2C. 1D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題:①設(shè)A,B為兩個集合,則的充分不必要條件;②,;③的充要條件;④,代數(shù)式的值都是質(zhì)數(shù).其中的真命題是________.(填寫序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為2的菱形,,平面平面,點為棱的中點.

(Ⅰ)在棱上是否存在一點,使得平面,并說明理由;

(Ⅱ)當二面角的余弦值為時,求直線與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在中,,,點在拋物線.

1)求的邊所在的直線方程;

2)求的面積最小值,并求出此時點的坐標;

3)若為線段上的任意一點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知直線的方程為.

1)若直線軸、軸上的截距之和為-1,求坐標原點到直線的距離;

2)若直線與直線分別相交于、兩點,點兩點的距離相等,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年電子商務(wù)蓬勃發(fā)展, 年某網(wǎng)購平臺“雙”一天的銷售業(yè)績高達億元人民幣,平臺對每次成功交易都有針對商品和快遞是否滿意的評價系統(tǒng).從該評價系統(tǒng)中選出次成功交易,并對其評價進行統(tǒng)計,網(wǎng)購者對商品的滿意率為,對快遞的滿意率為,其中對商品和快遞都滿意的交易為次.

(1)根據(jù)已知條件完成下面的列聯(lián)表,并回答能否有的把握認為“網(wǎng)購者對商品滿意與對快遞滿意之間有關(guān)系”?

對快遞滿意

對快遞不滿意

合計

對商品滿意

對商品不滿意

合計

(2)為進一步提高購物者的滿意度,平臺按分層抽樣方法從中抽取次交易進行問卷調(diào)查,詳細了解滿意與否的具體原因,并在這次交易中再隨機抽取次進行電話回訪,聽取購物者意見.求電話回訪的次交易至少有一次對商品和快遞都滿意的概率.

附: (其中為樣本容量)

查看答案和解析>>

同步練習(xí)冊答案