湖面上飄著一個(gè)小球,湖水結(jié)冰后將球取出,冰面上留下一個(gè)半徑為6cm,深2cm的空穴,則取出該球前,球面上的點(diǎn)到冰面的最大距離為(  )
A、20cmB、18cm
C、10cmD、8cm
考點(diǎn):球的體積和表面積
專題:計(jì)算題,球
分析:先設(shè)出球的半徑,進(jìn)而根據(jù)球的半徑,球面上的弦構(gòu)成的直角三角形,根據(jù)勾股定理建立等式,求得r,最后根據(jù)球面上的點(diǎn)到冰面的距離的最大值為2r-h,即可得到.
解答: 解:設(shè)球的半徑為r,
依題意可知36+(r-2)2=r2,解得r=10,
則球面上的點(diǎn)到冰面的距離的最大值為20-2=18(cm).
故選B.
點(diǎn)評(píng):本題主要考查了球面上的勾股定理和球面上的點(diǎn)到球的截面的距離的最值,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在梯形ABCD中,
AB
=2
DC
,
.
BC
 
.
=6,P為梯形ABCD所在平面上一點(diǎn),且滿足
AP
+
BP
+4
DP
=
0
,
DA
CB
=
.
DA
 
.
.
DP
 
.
,Q為邊AD上的一個(gè)動(dòng)點(diǎn),則
.
PQ
 
.
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱柱ABCD-A1B1C1D1中,底面ABCD是一個(gè)直角梯形,AB∥CD,∠ABC=90°.CD=3,BC=2,AB=5,AA1=2
5

(I)若A1A=A1D,點(diǎn)O在線段AB上,且AO=2,A1O=4,求證:A1O⊥平面ABCD;
(II)試判斷AB1與平面A1C1D是否平行,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線x2+y+1=0與雙曲線x2-
y2
b2
=1(b>0)的漸近線相切,則此雙曲線的焦距等于(  )
A、2
2
B、2
3
C、4
D、2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若“任意x∈R,不等式|x-1|-|x+1|>a”為假命題,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在半徑為10
3
cm的半圓形(O為圓心)鐵皮上截取一塊矩形材料ABCD,其中點(diǎn)A、B在直徑上,點(diǎn)C、D在圓周上,將所截得的矩形鐵皮ABCD卷成一個(gè)以AD為母線的圓柱形罐子的側(cè)面(不計(jì)剪裁和拼接損耗),記圓柱形罐子的體積為V(cm3).
(1)按下列要求建立函數(shù)關(guān)系式:
①設(shè)AD=xcm,將V表示為x的函數(shù);
②設(shè)∠AOD=θ(rad),將V表示為θ的函數(shù);
(2)請(qǐng)您選用(1)問(wèn)中的一個(gè)函數(shù)關(guān)系,求圓柱形罐子的最大體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在區(qū)間[-5,5]內(nèi)隨機(jī)取出一個(gè)實(shí)數(shù)a,則a∈(0,1)的概率為( 。
A、0.5B、0.3
C、0.2D、0.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的不等式|x+1|+|x-2|≤(a+
1
b
)(
1
a
+b)對(duì)任意正實(shí)數(shù)a、b恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且bcosC=(3a-c)cosB.
(1)求sinB的值;
(2)若b=2,且a=c,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案