【題目】已知,(,),且的圖象上相鄰兩條對稱軸之間的距離為.
(1)求函數的單調遞增區(qū)間;
(2)若的內角,,的對邊分別為,,,且,,,求,的值及邊上的中線.
【答案】(1).(2),,.
【解析】
(1)由平面向量數量積的坐標運算,結合降冪公式及輔助角公式化簡三角函數式,根據鄰兩條對稱軸之間的距離求得,即可得函數解析式,結合正弦函數的圖象與性質即可求得的單調遞增區(qū)間;
(2)由代入解析式可得的值;由正弦定理與余弦定理,代入已知條件可得的值;設AC邊上的中線為BD,由,結合平面向量數量積定義即可求得,即為邊上的中線長.
(1)由平面向量數量積的坐標運算,結合降冪公式及輔助角公式化簡可得
由的圖象上相鄰兩條對稱軸之間的距離為得,,
所以.
令得,
所以的單調遞增區(qū)間為.
(2)
解得,
由得,
由余弦定理可知,代入可得
解得,
記AC邊上的中線為BD,
.
所以,即邊上的中線為.
科目:高中數學 來源: 題型:
【題目】已知菱形ABCD中,∠BAD=60°,AC與BD相交于點O.將△ABD沿BD折起,使頂點A至點M,在折起的過程中,下列結論正確的是( )
A.BD⊥CM
B.存在一個位置,使△CDM為等邊三角形
C.DM與BC不可能垂直
D.直線DM與平面BCD所成的角的最大值為60°
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A,B關于坐標原點O對稱,,以M為圓心的圓過A,B兩點,且與直線相切,若存在定點P,使得當A運動時,為定值,則點P的坐標為( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年春節(jié)假期,旅游過年持續(xù)火爆.特別是:東北雪鄉(xiāng)、夢回大唐、江南水鄉(xiāng)、三亞之行這四條路線受到廣大人民的熱播.現有2個家庭準備去這四個地方旅游,假設每個家庭均從這四條路線中任意選取一條路線去旅源,則兩個家庭選擇同一路線的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線E:過點,過拋物線E上一點作兩直線PM,PN與圓C:相切,且分別交拋物線E于M、N兩點.
(1)求拋物線E的方程,并求其焦點坐標和準線方程;
(2)若直線MN的斜率為,求點P的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點的坐標分別為,.三角形的兩條邊,所在直線的斜率之積是.
(1)求點的軌跡方程;
(2)設直線方程為,直線方程為,直線交于,點,關于軸對稱,直線與軸相交于點.若的面積為,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我市某區(qū)2018年房地產價格因“棚戶區(qū)改造”實行貨幣化補償,使房價快速走高,為抑制房價過快上漲,政府從2019年2月開始采用實物補償方式(以房換房),3月份開始房價得到很好的抑制,房價漸漸回落,以下是2019年2月后該區(qū)新建住宅銷售均價的數據:
月份 | 3 | 4 | 5 | 6 | 7 |
價格(百元/平方米) | 83 | 82 | 80 | 78 | 77 |
(1)研究發(fā)現,3月至7月的各月均價(百元/平方米)與月份之間具有較強的線性相關關系,求價格(百元/平方米)關于月份的線性回歸方程;
(2)用表示用(1)中所求的線性回歸方程得到的與對應的銷售均價的估計值,3月份至7月份銷售均價估計值與實際相應月份銷售均價差的絕對值記為,即,.若,則將銷售均價的數據稱為一個“好數據”,現從5個銷售均價數據中任取
參考公式:回歸方程系數公式,;參考數據:,.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了貫徹落實黨中央精準扶貧決策,某市將其低收入家庭的基本情況經過統計繪制如圖,其中各項統計不重復.若該市老年低收入家庭共有900戶,則下列說法錯誤的是( 。
A.該市總有 15000 戶低收入家庭
B.在該市從業(yè)人員中,低收入家庭共有1800戶
C.在該市無業(yè)人員中,低收入家庭有4350戶
D.在該市大于18歲在讀學生中,低收入家庭有 800 戶
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在等腰梯形中,兩腰,底邊是的三等分點,是的中點.分別沿將四邊形和折起,使重合于點,得到如圖2所示的幾何體.在圖2中,分別為的中點.
(1)證明:平面
(2)求幾何體的體積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com