【題目】已知菱形ABCD中,∠BAD=60°,ACBD相交于點(diǎn)O.將△ABD沿BD折起,使頂點(diǎn)A至點(diǎn)M,在折起的過程中,下列結(jié)論正確的是(

A.BDCM

B.存在一個(gè)位置,使△CDM為等邊三角形

C.DMBC不可能垂直

D.直線DM與平面BCD所成的角的最大值為60°

【答案】ABD

【解析】

畫出圖形,利用直線與直線的位置關(guān)系,直線與平面的位置關(guān)系判斷選項(xiàng)的正誤即可.

A,菱形中,,相交于點(diǎn).將沿折起,使頂點(diǎn)至點(diǎn),如圖:取的中點(diǎn),連接,,可知,,所以平面,可知,故A正確;

B,由題意可知,三棱錐是正四面體時(shí),為等邊三角形,故B正確;

C,三棱錐是正四面體時(shí),垂直,故C不正確;

D,平面與平面垂直時(shí),直線與平面所成的角的最大值為,故D正確.

故選:ABD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)滿足,且當(dāng)時(shí),成立,若,,,則a,b,c的大小關(guān)系是()

A. aB. C. D. c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若的極小值點(diǎn),求實(shí)數(shù)的取值范圍;

2)若,證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)fx),若fx0)=x0,則稱x0fx)的不動(dòng)點(diǎn).設(shè)fx)=x3+ax2+bx+3.

1)當(dāng)a0時(shí),

i)求fx)的極值點(diǎn);

)若存在x0既是fx)的極值點(diǎn),也是fx)的不動(dòng)點(diǎn),求b的值;

2)是否存在a,b,使得fx)有兩個(gè)極值點(diǎn),且這兩個(gè)極值點(diǎn)均為fx)的不動(dòng)點(diǎn)?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)分別在軸,軸上運(yùn)動(dòng),,點(diǎn)在線段上,且.

1)求點(diǎn)的軌跡的方程;

2)直線交于,兩點(diǎn),,若直線,的斜率之和為2,直線是否恒過定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

I)若曲線存在斜率為-1的切線,求實(shí)數(shù)a的取值范圍;

II)求的單調(diào)區(qū)間;

III)設(shè)函數(shù),求證:當(dāng)時(shí), 上存在極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為,且成績分布在,分?jǐn)?shù)在以上(含的同學(xué)獲獎(jiǎng). 按文理科用分層抽樣的方法抽取人的成績作為樣本得到成績的頻率分布直方圖(見下圖).

I)在答題卡上填寫下面的列聯(lián)表,能否有超過的把握認(rèn)為獲獎(jiǎng)與學(xué)生的文理科有關(guān)”?

文科生

理科生

合計(jì)

獲獎(jiǎng)

不獲獎(jiǎng)

合計(jì)

II將上述調(diào)査所得的頻率視為概率,現(xiàn)從該校參與競賽的學(xué)生中,任意抽取名學(xué)生,獲獎(jiǎng)學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.

附表及公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖放置的邊長為1的正方形 沿 軸滾動(dòng)(向右為順時(shí)針,向左為逆時(shí)針).設(shè)頂點(diǎn) 的軌跡方程是,則關(guān)于的最小正周期在其兩個(gè)相鄰零點(diǎn)間的圖像與x軸所圍區(qū)域的面積S的正確結(jié)論是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)a1時(shí),求不等式f(x)2的解集;

(2)若對任意xR,不等式f(x)≥a23a3恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案