6.已知空間幾何體ABCDEF中,四邊形ABCD是正方形,AF⊥平面ABCD,BE⊥平面ABCD,AB=AF=2BE.
(Ⅰ)求證:BD∥平面CEF;
(Ⅱ)求CF與平面ABF所成角的正弦值.

分析 (1)取AF的中點G連結BG,GD,EG,證明BG∥EF,CD∥EG,CE∥DG,結合CE∩EF=E,BG∩DG=G,得到平面BDG∥平面CEF,推出BD∥平面CEF.
(2)設AB=a,連結BF,說明∠BFC為CF與平面ABEF所成角的平面角,在Rt△CBF中,求解即可.

解答 (1)證明:取AF的中點G連結BG,GD,EG
∵AF⊥平面ABCD,BE⊥平面ABCD,
∴BE∥GF且BE=GF,∴四邊形BEFG為平行四邊形,
∴BG∥EF,
同理可證四邊形ABEG為平行四邊形,∴EG∥AB且EG=AB,
又CD∥AB且CD=AB,∴CD∥EG且CD=EG,∴四邊形CDGE為平行四邊形,∴CE∥DG且EG=AB,
又∵CE∩EF=E,BG∩DG=G,∴平面BDG∥平面CEF,
∴BD∥平面CEF…(6分)
(2)解:設AB=a,則$AC=\sqrt{2}a,\;CF=\sqrt{3}a$,
連結BF,易證CB⊥平面ABEF,∴∠BFC為CF與平面ABEF所成角的平面角,
在Rt△CBF中,$sin∠BFC=\frac{BC}{CF}=\frac{AB}{CF}=\frac{a}{{\sqrt{3}a}}=\frac{{\sqrt{3}}}{3}$…(12分)

點評 本題考查直線與平面所成角,直線與平面平行,平面與平面平行的判定定理與性質(zhì)定理的應用,考查空間想象能力以及計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.一臺機器使用時間較長,但還可以使用.它按不同的轉(zhuǎn)速生產(chǎn)出來的某機械零件有一些會有缺點,每小時生產(chǎn)有缺點零件的多少,隨機器運轉(zhuǎn)的速度而變化,如表為抽樣試驗結果:
轉(zhuǎn)速x(轉(zhuǎn)/秒)1614128
每小時生產(chǎn)有
缺點的零件數(shù)y(件)
11985
(1)用相關系數(shù)r對變量y與x進行相關性檢驗;
(2)如果y與x有線性相關關系,求線性回歸方程;
(3)若實際生產(chǎn)中,允許每小時的產(chǎn)品中有缺點的零件最多為10個,那么,機器的運轉(zhuǎn)速度應控制在什么范圍內(nèi)?(結果保留整數(shù))
參考數(shù)據(jù):$\sum_{i=1}^{4}$xiyi=438,t=m2-1,$\sum_{i=1}^{4}$yi2=291,$\sqrt{656.25}$≈25.62.
參考公式:相關系數(shù)計算公式:r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}•\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$
回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中斜率和截距的最小二乘估計公式分別為:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知:f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],且a+b≠0時,有$\frac{f(a)+f(b)}{a+b}$>0恒成立.
(Ⅰ)用定義證明函數(shù)f(x)在[-1,1]上是增函數(shù);
(Ⅱ)解不等式:$f(x+\frac{1}{2})$<f(1-x);
(Ⅲ)若f(x)≤m2-2m+1對所有x∈[-1,1]恒成立,求:實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.(1)求不等式的解集:-x2+4x+5<0
(2)解關于x的不等式:x2+(1-a)x-a<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.圓C:x2+y2-6x+8y+24=0關于直線 l:x-3y-5=0對稱的圓的方程是( 。
A.(x+1)2+(y+2)2=1B.(x-1)2+(y-2)2=1C.(x-1)2+(y+2)2=1D.(x+1)2+(y-2)2=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.2011年,國際數(shù)學協(xié)會正式宣布,將每年的3月14日設為國際數(shù)學節(jié),來源是中國古代數(shù)學家祖沖之的圓周率,為慶祝該節(jié)日,某校舉辦的數(shù)學嘉年華活動中,設計了如下有獎闖關游戲:參賽選手按第一關、第二關、第三關的順序依次闖關,若闖關成功,分別獲得5個學豆、10個學豆、20個學豆的獎勵,游戲還規(guī)定,當選手闖過一關后,可以選擇帶走相應的學豆,結束游戲;也可以選擇繼續(xù)闖下一關,若有任何一關沒有闖關成功,則全部學豆歸零,游戲結束.設選手甲第一關、第二關、第三關的概率分別為$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,選手選擇繼續(xù)闖關的概率均為$\frac{1}{2}$,且各關之間闖關成功互不影響
(1)求選手獲得5個學豆的概率;
(2)求選手甲第一關闖關成功且所得學豆為零的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.解不等式:
(1)$\frac{x+3}{1-2x}$≥0
(2)$\frac{5}{{x_{\;}^2-10x+21}}$>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知二次函數(shù)f(x)=ax2-x+c(x∈R)的值域為[0,+∞),則$\frac{2}{a}$+$\frac{2}{c}$的最小值為8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.假設關于某設備的使用年限x和所支出的維修費用y有如下的統(tǒng)計資料 若由資料知y對x呈線性相關關系,
使用年限x23456
維修費用y2.23.85.56.57.0
參考公式:$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}({x}_{i}^{2}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}}\\{a=\overline{y}-b\overline{x}}\end{array}\right.$
試求:
(1)線性回歸方程.
(2)估計使用年限為10年時,維修費用大約是多少?

查看答案和解析>>

同步練習冊答案