17.已知:f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],且a+b≠0時(shí),有$\frac{f(a)+f(b)}{a+b}$>0恒成立.
(Ⅰ)用定義證明函數(shù)f(x)在[-1,1]上是增函數(shù);
(Ⅱ)解不等式:$f(x+\frac{1}{2})$<f(1-x);
(Ⅲ)若f(x)≤m2-2m+1對(duì)所有x∈[-1,1]恒成立,求:實(shí)數(shù)m的取值范圍.

分析 (Ⅰ)設(shè)任意x1,x2∈[-1,1],且x1<x2,由奇函數(shù)的性質(zhì)化簡(jiǎn)f(x2)-f(x1),由$\frac{f(a)+f(b)}{a+b}>0$得$\frac{{f({x_2})+f(-{x_1})}}{{{x_2}+(-{x_1})}}>0$,判斷出符號(hào)后,由函數(shù)單調(diào)性的定義證明結(jié)論成立;
(Ⅱ)根據(jù)函數(shù)的單調(diào)性和定義域列出不等式,求出不等式的解集;
(Ⅲ)由函數(shù)的單調(diào)性求出f(x)的最大值,由恒成立列出不等式,求出實(shí)數(shù)m的取值范圍.

解答 證明:(Ⅰ)設(shè)任意x1,x2∈[-1,1],且x1<x2,
∵f(x)是定義在[-1,1]上的奇函數(shù),
∴f(x2)-f(x1)=f(x2)+f(-x1
∵x1<x2,∴x2+(-x1)≠0,
由題意知,$\frac{f(a)+f(b)}{a+b}>0$,則$\frac{{f({x_2})+f(-{x_1})}}{{{x_2}+(-{x_1})}}>0$,
∵x2+(-x1)=x2-x1>0,
∴f(x2)+f(-x1)>0,即f(x2)>f(x1),
∴函數(shù)f(x)在[-1,1]上是增函數(shù).…(5分)
解:(Ⅱ)由(Ⅰ)和不等式$f(x+\frac{1}{2})<f(1-x)$得,
$\left\{\begin{array}{l}-1≤x+\frac{1}{2}≤1\\-1≤1-x≤1\\ x+\frac{1}{2}<1-x\end{array}\right.$,解得$0≤x<\frac{1}{4}$,
∴不等式的解集是[0,$\frac{1}{4}$)…(9分)
(Ⅲ)由(Ⅰ)得,f(x)最大值為f(1)=1,
所以要使f(x)≤m2-2m+1對(duì)所有x∈[-1,1],
只需1≤m2-2m+1恒成立,解得m≤0或m≥2,
得實(shí)數(shù)m的取值范圍為m≤0或m≥2.…(14分)

點(diǎn)評(píng) 本題考查定義法證明抽象函數(shù)的單調(diào)性,奇函數(shù)的性質(zhì),以及恒成立問(wèn)題轉(zhuǎn)化為求最值,考查轉(zhuǎn)化思想,化簡(jiǎn)、變形能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知拋物線E:y2=2px(p>0)的焦點(diǎn)F,E上一點(diǎn)(3,m)到焦點(diǎn)的距離為4.
(Ⅰ)求拋物線E的方程;
(Ⅱ)過(guò)F作直線l,交拋物線E于A,B兩點(diǎn),若直線AB中點(diǎn)的縱坐標(biāo)為-1,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.如圖所示,在棱長(zhǎng)為4的正方體ABCD-A1B1C1D1中,點(diǎn)E是棱CC1的中點(diǎn),則異面直線D1E與AC所成角的余弦值是$\frac{\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.求下列各式的值:
(Ⅰ)$|{1+lg0.001}|+\sqrt{{{lg}^2}\frac{1}{3}-4lg3+4}+lg6-lg0.02$.
(Ⅱ)${(-\frac{27}{8})^{-\frac{2}{3}}}+{0.002^{-\frac{1}{2}}}-10{(\sqrt{5}-2)^{-1}}+{(2-\sqrt{3})^0}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.“數(shù)列{an}既是等差數(shù)列又是等比數(shù)列”是“數(shù)列{an}是常數(shù)列”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知集合A={x∈Z|-1≤x≤2},B={y|y=2x},則A∩B=( 。
A.B.[0,2]C.(0,2]D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若函數(shù)f(x)=lnx+ax2-2在區(qū)間($\frac{1}{2}$,2)內(nèi)存在單調(diào)遞增區(qū)間,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-2]B.(-$\frac{1}{8}$,+∞)C.(-2,-$\frac{1}{8}$)D.(-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知空間幾何體ABCDEF中,四邊形ABCD是正方形,AF⊥平面ABCD,BE⊥平面ABCD,AB=AF=2BE.
(Ⅰ)求證:BD∥平面CEF;
(Ⅱ)求CF與平面ABF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在矩形ABCD中,以DA所在直線為x軸,以DA中點(diǎn)O為坐標(biāo)原點(diǎn),建立如圖所示的平面直角坐標(biāo)系.已知點(diǎn)B的坐標(biāo)為(3,2),E、F為AD的兩個(gè)三等分點(diǎn),AC和BF交于點(diǎn)G,△BEG的外接圓為⊙H.
(1)求證:EG⊥BF;
(2)求⊙H的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案