12.(1)3人坐在有八個座位的一排上,若每人的左右兩邊都要有空位,則不同坐法的種數(shù)為多少?
(2)有5個人并排站成一排,如果甲必須在乙的右邊,則不同的排法有多少種?

分析 (1)根據(jù)題意,使用插空法,把3個人看成是坐在座位上的人,往5個空座的空檔插,由組合知識,分析可得答案;
(2)使用倍分法,首先求得總的排法數(shù)為A55,分析可得其中甲在乙的右邊與甲在乙的左邊的情況數(shù)目應(yīng)該相等,進(jìn)而計算可得答案;

解答 解:(1)由題意知有5個座位都是空的,我們把3個人看成是坐在座位上的人,往5個空座的空檔插,
由于這5個空座位之間共有4個空,3個人去插,共有A43=24(種).
(2)∵總的排法數(shù)為A55=120(種),
∴甲在乙的右邊的排法數(shù)為$\frac{1}{2}$A55=60(種

點(diǎn)評 本題考查排列、組合的綜合運(yùn)用,要求學(xué)生會一些特殊方法的使用,如插空法、倍分法等;但首先應(yīng)該會轉(zhuǎn)化為對應(yīng)問題的模型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.過點(diǎn)(1,0)且與直線x-2y-2=0垂直的直線方程是2x+y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)用分析法證明不等式:$\sqrt{6}$+$\sqrt{5}$>$\sqrt{7}$+2;
(2)用綜合法證明不等式:若a+b+c=1,則ab+bc+ac≤$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.當(dāng)x>0時,求f(x)=$\frac{12}{x}$+3x的最小值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某單位有員工1000名,平均每人每年創(chuàng)造利潤10萬元.為了增加企業(yè)競爭力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出x(x∈N*)名員工從事第三產(chǎn)業(yè),調(diào)整后他們平均每人每年創(chuàng)造利潤為10(a-$\frac{3x}{500}}$)萬元(a>0),剩下的員工平均每人每年創(chuàng)造的利潤為原來(1+$\frac{x}{500}}$)倍.
(Ⅰ)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤,則最多可以調(diào)整出多少名員工從事第三產(chǎn)業(yè);
(Ⅱ)若調(diào)整出的員工創(chuàng)造的年總利潤始終不高于剩余員工創(chuàng)造的年總利潤,則a的最大取值是多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知tanα=2,求
(1)tan(α+$\frac{π}{4}$)的值       
(2)$\frac{6sinα+cosα}{3sinα-cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若曲線y=sinx(0<x<π)在點(diǎn)(x0,sinx0)處的切線與直線y=$\frac{1}{2}$x+1平行,則x0的值為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.a(chǎn),b是任意實(shí)數(shù),且a>b,則下列結(jié)論正確的是(  )
A.3-a<3-bB.$\frac{a}$<1C.lg(a-b)>lg$\frac{1}{a-b}$D.a2>b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某成衣批發(fā)店為了對一款成衣進(jìn)行合理定價,將該款成衣按事先擬定的價格進(jìn)行試銷,得到了如下數(shù)據(jù):
批發(fā)單價x(元)808284868890
銷售量y(件)908483807568
(1)求回歸直線方程$\hat y=\hat bx+\hat a$,其中$\hat b=-2$
(2)預(yù)測批發(fā)單價定為85元時,銷售量大概是多少件?
(3)假設(shè)在今后的銷售中,銷售量與批發(fā)單價仍然服從(1)中的關(guān)系,且該款成衣的成本價為40元/件,為使該成衣批發(fā)店在該款成衣上獲得更大利潤,該款成衣單價大約定為多少元?

查看答案和解析>>

同步練習(xí)冊答案