11.如圖,在D是直角△ABC斜邊BC上一點(diǎn),$AC=\sqrt{3}DC$.
(Ⅰ)若∠DAC=30°,求角B的大小;
(Ⅱ)若BD=2DC,且AD=4,求DC的長(zhǎng).

分析 (Ⅰ)利用正弦定理,三角形的內(nèi)角和定理,即可求出∠B的值;
(Ⅱ)設(shè)DC=x,表示出BD、BC和AC,利用余弦定理列方程求出DC的值.

解答 解:(Ⅰ)△ABC中,根據(jù)正弦定理,
$\frac{AC}{sin∠ADC}=\frac{DC}{sin∠DAC}$,
因?yàn)?AC=\sqrt{3}DC$,
所以$sin∠ADC=\sqrt{3}sin∠DAC=\frac{{\sqrt{3}}}{2}$;
又∠ADC=∠B+∠BAD=∠B+60°>60°,
所以∠ADC=120°;
所以∠C=180°-120°-30°=30°,
所以∠B=60°;
(Ⅱ)設(shè)DC=x,則BD=2x,BC=3x,$AC=\sqrt{3}x$;
∴$sinB=\frac{AC}{BC}=\frac{{\sqrt{3}}}{3}$,$cosB=\frac{{\sqrt{6}}}{3}$,$AB=\sqrt{6}x$;
在△ABC中,由余弦定理,得:
AD2=AB2+BD2-2AB•BDcosB,
即${4^2}=6{x^2}+4{x^2}-2×\sqrt{6}x×2x×\frac{{\sqrt{6}}}{3}=2{x^2}$,
解得$x=2\sqrt{2}$,即$DC=2\sqrt{2}$.

點(diǎn)評(píng) 本題考查了正弦、余弦定理的應(yīng)用問題,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知不等式|2x-a|≤3的解集為[-1,2].
(Ⅰ)求a的值;
(Ⅱ)若|x-m|<a,求證:|x|<|m|+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖是某幾何體挖去一部分后得到的三視圖,其中主視圖和左視圖相同都是一個(gè)等腰梯形及它的內(nèi)切圓,俯視圖中有兩個(gè)邊長(zhǎng)分別為2和8的正方形且圖中的圓與主視圖圓大小相等并且圓心為兩個(gè)正方形的中心.問該幾何體的體積是(  )
A.$\frac{420-32π}{3}$B.$\frac{336-32π}{3}$C.$\frac{168-4π}{3}$D.$\frac{168\sqrt{2}-64\sqrt{2}π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.角α的終邊在第三象限,那么$\frac{α}{3}$的終邊不可能在的象限是第(  )象限.
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若復(fù)數(shù)z滿足(1+2i)2z=1+z,則其共軛復(fù)數(shù)$\overline{z}$為( 。
A.$\frac{1}{8}$+$\frac{1}{8}$iB.-$\frac{1}{8}$-$\frac{1}{8}$iC.-$\frac{1}{8}$+$\frac{1}{8}$iD.$\frac{1}{8}$-$\frac{1}{8}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在Rt△ABC中,∠C=90°,AC=4,則$\overrightarrow{AB}$•$\overrightarrow{CA}$等于( 。
A.-16B.-8C.16D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.因?yàn)橹笖?shù)函數(shù)y=ax是增函數(shù),而y=($\frac{1}{2}$)x是指數(shù)函數(shù),所以y=($\frac{1}{2}$)x是增函數(shù)關(guān)于上面推理正確的說法是( 。
A.推理的形式錯(cuò)誤B.大前提是錯(cuò)誤的C.小前提是錯(cuò)誤的D.結(jié)論是正確的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.獨(dú)立性檢驗(yàn)中,假設(shè)H0:變量X與變量Y沒有關(guān)系,則在H0成立的情況下,P(K2≥6.635)≈0.010表示的意義是( 。
A.變量X與變量Y有關(guān)系的概率為1%
B.變量X與變量Y有關(guān)系的概率為99.9%
C.變量X與變量Y沒有關(guān)系的概率為99%
D.變量X與變量Y有關(guān)系的概率為99%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若x,y滿足約束條件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,則$\frac{y-1}{x}$的取值范圍為( 。
A.[0,$\frac{1}{2}$]B.[$\frac{1}{2}$,1]C.[0,2]D.[1,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案