已知向量
a
=(1,2),
b
=(1,0),
c
=(3,4),若λ為實數(shù),(
b
a
)⊥
c
,則λ的值為( 。
A、-
3
11
B、-
11
3
C、
1
2
D、
3
5
考點:數(shù)量積判斷兩個平面向量的垂直關(guān)系
專題:平面向量及應(yīng)用
分析:根據(jù)平面向量的坐標(biāo)運算,結(jié)合兩向量垂直,數(shù)量積等于0,求出λ的值.
解答: 解:∵向量
a
=(1,2),
b
=(1,0),
c
=(3,4),
且(
b
a
)⊥
c
,
∴(
b
a
)•
c
=0,
即(λ+1,2λ)•(3,4)=0,
∴3(λ+1)+4×2λ=0,
解得λ=-
3
11

故答案為:A.
點評:本題考查了平面向量的坐標(biāo)運算問題,也考查了平面向量的數(shù)量積運算問題,是基礎(chǔ)題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①k>4是方程x2+y2+2kx+4y+3k+8=0表示圓的充要條件;
②把y=sinx的圖象向右平移
π
3
單位,再保持縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?span id="zbh3jpn" class="MathJye">
1
2
,得到函數(shù)y=sin(2x-
π
3
)的圖象;
③函數(shù)f(x)=sin(2x+
π
3
)在[0,
π
6
]上為增函數(shù);
④橢圓
x2
m
+
y2
4
=1的焦距為2,則實數(shù)m的值等于5.
其中正確命題的序號為(  )
A、①③④B、②③④C、②④D、②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

中華人民共和國關(guān)于《環(huán)境空氣質(zhì)量指數(shù)(AQI)技術(shù)規(guī)定(試行)》(HJ633-2012)中,關(guān)于空氣質(zhì)量指數(shù)劃分如下表所示:
AQI0~5051~100101~150151~200201~300>300
級別Ⅰ級Ⅱ級Ⅲ級Ⅳ級Ⅴ級Ⅵ級
類別優(yōu)輕度污染中度污染重度污染嚴(yán)重污染
某市為了監(jiān)測該市的空氣質(zhì)量指數(shù),抽取一年中n天的數(shù)據(jù)進行分析,得到如下頻率分布表及頻率分布直方圖:
分組頻數(shù)頻率
[0,50)x0.06
[50,100)100.2
{100,150)20y
[150,200)150.3
[200,250)20.04
合計n1
(Ⅰ)求n、x、y和p的值;
(Ⅱ)利用樣本估計總體的思想,估計該市一年中空氣質(zhì)量指數(shù)的平均數(shù)為多少?
(Ⅲ)該市政府計劃通過對環(huán)境進行綜合治理,使得今后Ⅲ的空氣質(zhì)量指數(shù)比上一年降低5%,問至少經(jīng)過多少年后該市的空氣質(zhì)量可以達到優(yōu)良水平?
(參考數(shù)據(jù):0.954≈0.815,0.955≈0.774)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2lnx-x+
1
x
+2f′(1)x2
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)>ax對x∈(1,e)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點P為△ABC所在平面內(nèi)一點,若
CP
•(
CA
-
CB
)=0,則直線CP一定經(jīng)過△ABC的( 。
A、內(nèi)心B、垂心C、外心D、重心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)m>n,正數(shù)a>b,A=(an+bnm,B=(am+bmn,則( 。
A、A>B
B、A<B
C、A與B的大小關(guān)系由m與n的差決定
D、A與B的大小關(guān)系由a與b的差決定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點A(3,1)作直線l交x軸于點B,交直線l1:y=2x于點C,若|BC|=2|AB|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖為一個三棱柱的三視圖,則該三棱柱的體積為( 。
A、1250B、2500
C、3750

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下五個命題中,正確的有
 

①設(shè)A、B為兩個定點,k為非零常數(shù),|PA|-|PB|=k,則動點P的軌跡為雙曲線;
②過定圓C上一定點A作圓的動點弦AB,O為坐標(biāo)原點,
OP
=
1
2
OA
+
OB
),則動點P的軌跡為橢圓;
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
④雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1有相同的焦點;
⑤已知A(-2,0)、B(2,0),直線AP與直線BP相交于點P,它們的斜率之積為
1
4
,則點P的軌跡方程為
x2
4
+y2=1.

查看答案和解析>>

同步練習(xí)冊答案