設(shè)a為實(shí)數(shù),函數(shù)f(x)=2x2+(x-a)|x-a|.
(1)若f(0)≥1,求a的取值范圍;
(2)求f(x)的最小值;
(3)設(shè)函數(shù)h(x)=f(x),x∈(a,+∞),求不等式h(x)≥1的解集.
分析:(1)f(0)≥1?-a|a|≥1再去絕對(duì)值求a的取值范圍,
(2)分x≥a和x<a兩種情況來討論去絕對(duì)值,再對(duì)每一段分別求最小值,借助二次函數(shù)的對(duì)稱軸及單調(diào)性.最后綜合即可.
(3)h(x)≥1轉(zhuǎn)化為3x2-2ax+a2-1≥0,因?yàn)椴坏仁降慕饧蓪?duì)應(yīng)方程的根決定,所以再對(duì)其對(duì)應(yīng)的判別式分三種情況討論求得對(duì)應(yīng)解集即可.
解答:解:(1)若f(0)≥1,則-a|a|≥1?
?a≤-1
(2)當(dāng)x≥a時(shí),f(x)=3x
2-2ax+a
2,∴
f(x)min==,
如圖所示:
當(dāng)x≤a時(shí),f(x)=x
2+2ax-a
2,
∴
f(x)min==.
綜上所述:
f(x)min=.
(3)x∈(a,+∞)時(shí),h(x)≥1,
得3x
2-2ax+a
2-1≥0,△=4a
2-12(a
2-1)=12-8a
2當(dāng)a≤-
或a≥
時(shí),△≤0,x∈(a,+∞);
當(dāng)-
<a<
時(shí),△>0,得:
即
綜上可得,
當(dāng)a∈(-∞,-
)∪(
,+∞)時(shí),不等式組的解集為(a,+∞);
當(dāng)a∈(-
,-
)時(shí),不等式組的解集為(a,
]∪[
,+∞);
當(dāng)a∈[-
,
]時(shí),不等式組的解集為[
,+∞).
點(diǎn)評(píng):本題考查了分段函數(shù)的最值問題.分段函數(shù)的最值的求法是先對(duì)每一段分別求最值,最后綜合最大的為整個(gè)函數(shù)的最大值,最小的為整個(gè)函數(shù)的最小值.