分析 利用三角函數(shù)的二倍角公式化簡f(x)和g(x),|PQ|=|f(t)-g(t)|,即求=|f(t)-g(t)|的最大值.
解答 解:函數(shù)f(x)=cos2($\frac{π}{4}$-x)=$\frac{1}{2}$$+\frac{1}{2}$cos($\frac{π}{2}-2x$)=$\frac{1}{2}$sin2x+$\frac{1}{2}$;
函數(shù)g(x)=$\sqrt{3}$sin($\frac{π}{4}$+x)cos($\frac{π}{4}$+x)=$\frac{\sqrt{3}}{2}$sin(2x+$\frac{π}{2}$)=$\frac{\sqrt{3}}{2}$cos2x.
由題意,|PQ|=|f(t)-g(t)|,即|PQ|=$\frac{1}{2}$sin2t+$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$cos2t|=|sin(2t-$\frac{π}{3}$)$+\frac{1}{2}$|.
當(dāng)sin(2t-$\frac{π}{3}$)取得最大值時(shí),可得|PQ|的最大值.
∴|PQ|的最大值為1+$\frac{1}{2}$=$\frac{3}{2}$.
故答案為:$\frac{3}{2}$.
點(diǎn)評(píng) 本題考查了三角函數(shù)的二倍角公式化簡計(jì)算能力和三角函數(shù)圖象性質(zhì)的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-4,10) | B. | [-5,2] | C. | [-4,3] | D. | [-2,5] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $8-\frac{5π}{12}$ | B. | $8-\frac{π}{3}$ | C. | $8-\frac{π}{2}$ | D. | $8-\frac{7π}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}-1$ | B. | $\sqrt{2}+1$ | C. | $2+\sqrt{2}$ | D. | $\frac{\sqrt{5}+1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2+π | B. | $3+\frac{π}{2}$ | C. | 3+π | D. | $4+\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com