2sin43°-
3
sin13°
cos13°
=( 。
A、-
3
B、
3
C、-1
D、1
考點:兩角和與差的正弦函數(shù),兩角和與差的正切函數(shù)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:化43°為30°+13°,利用兩角和與差的正弦函數(shù)展開化簡可得.
解答: 解:
2sin43°-
3
sin13°
cos13°

=
2sin(30°+13°)-
3
sin13°
cos13°

=
2(
1
2
cos13°+
3
2
sin13°)-
3
sin13°
cos13°

=
cos13°+
3
sin13°-
3
sin13°
cos13°

=1
故選:D
點評:本題考查兩角和與差的正弦函數(shù),化43°為30°+13°是解決問題的關(guān)鍵,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=6,an+1=
n+3
n
an
則通項an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f0(x)=cosx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),(n∈N),則f2008(x)=( 。
A、sinxB、-sinx
C、cosxD、-cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知過點A(-1,-1)的直線l與圓x2+(y-1)2=1相切,且與直線l1:x+my+1=0平行,則m=( 。
A、0
B、
3
4
C、-
4
3
D、±
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=8x上到其焦點F距離為5的點有(  )
A、0個B、1個C、2個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

讀程序:
S=0
sum=0
for i=1 to 100
S=S+i
i=i+1
sum=sum+S
next
輸出sum
該程序的運(yùn)行結(jié)果是( 。┑闹担
A、1+2+3+…+99
B、1+2+3+…+100
C、1+(1+2)+(1+2+3)+…+(1+2+3+…+99)
D、1+(1+2)+(1+2+3)+…+(1+2+3+…+100)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“φ=
π
2
”是“cosφ=0”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z滿足z•(1-i)=3+i,i為虛數(shù)單位,則|z|=( 。
A、
5
B、
3
C、5
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線y=g(x)在點(1,g(1))處的切線方程為y=2x+1,設(shè)函數(shù)f(x)=g(2x-1),則曲線y=f(x)在點(1,f(1))處切線方程為( 。
A、y=2x+1
B、y=4x-1
C、y=2x-1
D、y=4x+1

查看答案和解析>>

同步練習(xí)冊答案