已知過點(diǎn)A(-1,-1)的直線l與圓x2+(y-1)2=1相切,且與直線l1:x+my+1=0平行,則m=( 。
A、0
B、
3
4
C、-
4
3
D、±
3
4
考點(diǎn):圓的切線方程,直線的一般式方程與直線的平行關(guān)系
專題:直線與圓
分析:由直線與圓相切的性質(zhì)可求直線且l的斜率,然后根據(jù)且l∥l1可求m.
解答: 解:由題意可知:當(dāng)直線的斜率不存在時(shí),直線x=-1,是圓x2+(y-1)2=1的切線,
直線與x+my+1=0平行,不可能,只能重合.
當(dāng)直線直線l的斜率存在,可設(shè)直線方程為y+1=k(x+1),
圓x2+(y-1)2=1的圓心(0,1),半徑為1,
由直線與圓相切的性質(zhì)可知,
|k-2|
1+k2
=1
,
解得:k=
3
4

∵直線l1的方程為x+my+1=0,且l1∥l
∴m=-
4
3

故選:C.
點(diǎn)評:本題主要考查了直線與圓相切性質(zhì)的應(yīng)用及兩條直線平行的斜率相等關(guān)系的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2sin(
1
2
x+
π
3
)單調(diào)增區(qū)間為:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z=sin(-
π
7
)+icos(-
π
7
),i為虛數(shù)單位,則復(fù)數(shù)z在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m、n是兩條不同的直線,α、β是兩個(gè)不同的平面.下列四個(gè)命題正確的是( 。
A、若m?α,α∥β,則m∥β
B、若m、n?α,m∥β,n∥β,則α∥β
C、若m⊥α,α⊥β,n∥β,則m⊥n
D、若α⊥γ,β⊥γ,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,“A<B”是“sin2A<sin2B”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

運(yùn)行如圖所示的算法流程圖,當(dāng)輸入的x值為( 。⿻r(shí),輸出的y值為4.
A、1B、-1C、-2D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2sin43°-
3
sin13°
cos13°
=(  )
A、-
3
B、
3
C、-1
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)在[a,b]上連續(xù),將[a,b]n等分,在每個(gè)小區(qū)間上任取ξi,則
b
a
f(x)dx=( 。
A、
lim
n→∞
n
i=1
f(ξi
B、
lim
n→∞
n
i=1
f(ξi)•
b-a
n
C、
lim
n→∞
n
i=1
f(ξi)•ξi
D、
lim
n→∞
n
i=1
f(ξi)•(ξii-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知長方形ABCD,拋物線l以CD的中點(diǎn)E為頂點(diǎn),經(jīng)過A、B兩點(diǎn),記拋物線l與AB邊圍成的封閉區(qū)域?yàn)镸.若隨機(jī)向該長方形內(nèi)投入一粒豆子,落入?yún)^(qū)域M的概率為P.則下列結(jié)論正確的是( 。
A、不論邊長AB,BC如何變化,P為定值
B、若
AB
BC
的值越大,P越大
C、當(dāng)且僅當(dāng)AB=BC時(shí),P最大
D、當(dāng)且僅當(dāng)AB=BC時(shí),P最小

查看答案和解析>>

同步練習(xí)冊答案