如圖,PA⊥平面ABCD,四邊形ABCD是矩形,PA=AD=a,M,N分別是AB,PC的中點(diǎn)。
(1)求平面PCD與平面ABCD所成二面角的大。
(2)求證:MN⊥平面PCD;
(3)當(dāng)AB的長度變化時(shí),求異面直線PC與AD所成角的可能范圍。
|
(1)PA⊥平面ABCD,CD⊥AD,∴PD⊥CD。
故∠PDA是平面PCD與平面ABCD所成二面角的平面角。
在Rt△PAD中,PA⊥AD,PA=AD,∴∠PDA=45°。
(2)如圖,取PD中點(diǎn)E,連結(jié)AE,EN,又M,N分別是AB,PC的中點(diǎn),
|
在等腰Rt△PAD中,AE是斜邊的中線。 ∴AE⊥PD。
又CD⊥AD,CD⊥PD ∴CD⊥平面PAD, ∴CD⊥AE,
又PD∩CD=D,∴AE⊥平面PCD。 ∴MN⊥平面PCD。
(3)∵AD∥BC,∴∠PCB為異面直線PC,AD所成的角。
由三垂線定理知PB⊥BC,設(shè)AB=x(x>0)!鄑an∠PCB==。
又∵∈(0,∞),∴tan∠PCB∈(1,+∞)。
又∠PCB為銳角,∴∠PCB∈(,),
即異面直線PC,AD所成的角的范圍為(,)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com