9.若直線l沿x軸向左平移4個單位,再沿y軸向上平移1個單位后,回到原來的位置,則直線l的斜率是-$\frac{1}{4}$.

分析 設(shè)直線l的方程為:y=kx+b,由已知可得kx+b=k(x+4)+b+1,解得答案.

解答 解:設(shè)直線l的斜率為k,
直線l的方程為:y=kx+b,
則直線l沿x軸向左平移4個單位,再沿y軸向上平移1個單位后,
函數(shù)的解析式為:y=k(x+4)+b+1,
由題意得:kx+b=k(x+4)+b+1,
解得:k=-$\frac{1}{4}$,
故答案為:-$\frac{1}{4}$

點評 本題考查的知識點是函數(shù)圖象的平移變換,多項式相等的充要條件,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在△ABC中,點P在BC邊上,∠PAC=60°,PC=2,AP+AC=4.
(Ⅰ) 求∠ACP;
(Ⅱ) 若△APB的面積是$\frac{{3\sqrt{3}}}{2}$,求sin∠BAP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.經(jīng)過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點,傾斜角為60°的直線與雙曲線有且只有一個交點,則此雙曲線的離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若方程$\frac{x^2}{4-t}+\frac{y^2}{t-1}=1$所表示的曲線為C,給出下列四個命題:
①若C為橢圓,則1<t<4;
②若C為雙曲線,則t>4或t<1;
③曲線C不可能是圓;
④若$1<t<\frac{5}{2}$,曲線C為橢圓,且焦點坐標(biāo)為$(±\sqrt{5-2t},0)$;若t<1,曲線C為雙曲線,且虛半軸長為$\sqrt{1-t}$.
則為真命題的是(  )
A.①②B.②③C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若集合M={x|y=loga(1-x2)},N={y|y=x2+1,x∈R},則∁R(M∪N)( 。
A.(-∞,-1]B.(-1,+∞)C.(-1,1)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.正在進行中的CBA比賽吸引了眾多觀眾,遼籃的表現(xiàn)更是牽動了廣大球迷的心,某機構(gòu)為了解該地群眾對賽事的關(guān)注程度,隨機調(diào)查了120名群眾,得到如下列聯(lián)表(單位:名)
合計
關(guān)注602080
不關(guān)注202040
合計8040120
附表:
p(k2≥k00.150.100.0250.0100.0050.001 
k02.0722.7065.0246.6357.87910.828 
${K^2}=\frac{{n{{(ad-cb)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
(1)從這80名男群眾中按是否對賽事關(guān)注分層抽樣,抽取一個容量為8的樣本,問樣本中對賽事關(guān)注和不關(guān)注的群眾各多少名?
(2)根據(jù)以上列聯(lián)表,問能否在犯錯率不超過0.010的前提下認為群眾性別與關(guān)注賽事有關(guān)?
(3)從(1)中的8名男性群眾中隨機選取2名進行跟蹤調(diào)查,求選到的兩名群眾中恰有一名觀注賽事的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知集合A={x|(2x+5)(x+k)<0}
(1)若A⊆(-5,3),求k的取值范圍.
(2)若B={x|x2-x-2>0},且A∩B∩Z={-2}(Z為整數(shù)集合),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知△ABC中,a=4$\sqrt{2}$,b=4,A=45°,則B等于( 。
A.30°B.30°或150°C.60°D.60°或120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若$sin(\frac{π}{3}+a)=\frac{5}{12}$,則$cos(\frac{π}{6}-a)$=$\frac{5}{12}$.

查看答案和解析>>

同步練習(xí)冊答案