【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為 (為參數(shù)),以直角坐標(biāo)系原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;

(Ⅱ)設(shè)點為曲線上的動點,求點到直線距離的最大值及其對應(yīng)的點的直角坐標(biāo).

【答案】(Ⅰ) 曲線的普通方程為: ,直線的直角坐標(biāo)方程為. (Ⅱ) 最大值為, 點的坐標(biāo)為.

【解析】試題分析:

(1)消去參數(shù)可曲線的普通方程為: ,極坐標(biāo)化簡直角坐標(biāo)可得直線的直角坐標(biāo)方程為.

(2)利用點到直線距離公式可得,由三角函數(shù)的 性質(zhì)可得,此時點的坐標(biāo)為.

試題解析:

(Ⅰ)曲線的普通方程為: ,

化簡為,

∴直線的直角坐標(biāo)方程為.

(Ⅱ)設(shè)點的坐標(biāo)為,

則點到直線的距離,

其中.

顯然當(dāng)時, ,

此時,

,

,

即點的坐標(biāo)為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù)).

(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A={x|x2﹣2x﹣8<0},B={x|x2+2x﹣3>0},C={x|x2﹣3ax+2a2<0},
(1)求A∩B.
(2)試求實數(shù)a的取值范圍,使C(A∩B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=ax﹣1(a>0,且a≠1).
(1)求f(2)+f(﹣2)的值;
(2)求f(x)的解析式;
(3)解關(guān)于x的不等式f(x)<4,結(jié)果用集合或區(qū)間表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一汽車廠生產(chǎn)A,B,C三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩種型號,某月產(chǎn)量如表(單位:輛):

轎車A

轎車B

轎車C

舒適型

100

150

z

標(biāo)準(zhǔn)型

300

450

600

按類型分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有A類轎車10輛。

(1)求z的值;

(2)用分層抽樣的方法在C類轎車中抽取一個容量為5的樣本。將該樣本看成一個總體,從中任取2輛,求至少有1輛舒適型轎車的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)f(x)=x2+bx+c滿足f(2)=f(﹣2),且函數(shù)的f(x)的一個根為1.
(1)求函數(shù)f(x)的解析式;
(2)對任意的x∈[ ,+∞),方程4mf(x)+f(x﹣1)=4﹣4m有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各組函數(shù)中,表示同一函數(shù)的是(
A.f(x)=x﹣1,g(x)= ﹣1
B.f(x)=|x|,g(x)=( 2
C.f(x)=x,g(x)=
D.f(x)=2x,g(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)電飯煲,每年需投入固定成本40萬元,每生產(chǎn)1萬件還需另投入16萬元的變動成本,設(shè)該公司一年內(nèi)共生產(chǎn)電飯煲萬件并全部銷售完,每一萬件的銷售收入為萬元,且),該公司在電飯煲的生產(chǎn)中所獲年利潤為(萬元),(注:利潤=銷售收入-成本)

1寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬件)的函數(shù)解析式,并求年利潤的最大值;

2為了讓年利潤不低于2360萬元,求年產(chǎn)量的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第31屆夏季奧林匹克運動會于2016年8月5日至8月21日在巴西里約熱內(nèi)盧舉行.如表是近五屆奧運會中國代表團(tuán)和俄羅斯代表團(tuán)獲得的金牌數(shù)的統(tǒng)計數(shù)據(jù)(單位:枚).

第30屆倫敦

第29屆北京

第28屆雅典

第27屆悉尼

第26屆亞特蘭大

中國

38

51

32

28

16

俄羅斯

24

23

27

32

26

(1)根據(jù)表格中兩組數(shù)據(jù)在答題卡上完成近五屆奧運會兩國代表團(tuán)獲得的金牌數(shù)的莖葉圖,并通過莖葉圖比較兩國代表團(tuán)獲得的金牌數(shù)的平均值及分散程度(不要求計算出具體數(shù)值,給出結(jié)論即可);

(2)如表是近五屆奧運會中國代表團(tuán)獲得的金牌數(shù)之和(從第26屆算起,不包括之前已獲得的金牌數(shù))隨時間變化的數(shù)據(jù):

時間(屆)

26

27

28

29

30

金牌數(shù)之和(枚)

16

44

76

127

165

作出散點圖如圖:

由圖可以看出,金牌數(shù)之和與時間之間存在線性相關(guān)關(guān)系,請求出關(guān)于的線性回歸方程,并預(yù)測到第32屆奧運會時中國代表團(tuán)獲得的金牌數(shù)之和為多少?

附:對于一組數(shù)據(jù), ,…, ,其回歸直線的斜率和截距的最小二乘估計分別為:

,

查看答案和解析>>

同步練習(xí)冊答案