已知數(shù)列{an}是一個(gè)等差數(shù)列,且a2=5,a5=11.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)令bn=
1
a2n
-1
(n∈N*)
,求數(shù)列{bn}的前n項(xiàng)和Tn
(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,
由已知條件得
a1+d=5
a1+4d=11
,
解得a1=3,d=2.…(4分)
所以an=a1+(n-1)d=2n+1.…(6分)
(Ⅱ)由(Ⅰ)知an=2n+1.
所以bn=
1
an2-1
=
1
(2n+1)2-1
=
1
4n(n+1)
=
1
4
1
n
-
1
n+1
).…(10分)
所以Tn=
1
4
(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)=
1
4
(1-
1
n+1
)=
n
4(n+1)

即數(shù)列{bn}的前n項(xiàng)和Tn=
n
4(n+1)
.…(13分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知{}是公比為q的等比數(shù)列,且成等差數(shù)列.
(Ⅰ)求q的值;
(Ⅱ)設(shè){}是以2為首項(xiàng),q為公差的等差數(shù)列,其前n項(xiàng)和為Sn,當(dāng)n≥2時(shí),比較Sn與bn的大小,并說明理由.
.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等差數(shù)列5,4
2
7
,3
4
7
…,記第n項(xiàng)到第n+6項(xiàng)的和為Tn,則|Tn|取得最小值時(shí),n的值為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知{an}是遞增的等差數(shù)列,它的前三項(xiàng)的和為-3,前三項(xiàng)的積為8.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{|an|}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在面積為1的正△A1B1C1內(nèi)作正△A2B2C2,使
A1A2
=2
A2B1
,
B1B2
=2
B2C1
C1C2
=2
C2A1
,依此類推,在正△A2B2C2內(nèi)再作正△A3B3C3,….記正△AiBiCi的面積為ai(i=1,2,…,n),則a1+a2+…+an=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在數(shù)列{an}中,a1=1,且對(duì)于任意自然數(shù)n,都有an+1=an+n,求a100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列{an}的前n項(xiàng)和Sn=n2-n(n∈N+),
(1)判斷數(shù)列{an}是否為等差數(shù)列,并證明你的結(jié)論;
(2)設(shè)bn=
1
Sn
,且{bn}的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知n∈N*,設(shè)Sn是單調(diào)遞減的等比數(shù)列{an}的前n項(xiàng)和,a1=1,且S2+a2、S4+a4、S3+a3成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列x∈(0,+∞)滿足b1=2a1,bn+1bn+bn+1-bn=0,求數(shù)列f(x)max≤0的通項(xiàng)公式;
(Ⅲ)在滿足(Ⅱ)的條件下,若cn=
ancos(nπ)
bn
,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知n次多項(xiàng)式Sn(x)=(1+2x)(1+4x)(1+8x)…(1+2nx),其中n是正整數(shù).記Sn(x)的展開式中x的系數(shù)是an,x2的系數(shù)是bn
(Ⅰ)求an;
(Ⅱ)證明:bn+1-bn=4n+1-2n+2;
(Ⅲ)是否存在等比數(shù)列{cn}和正數(shù)c,使得bn=(cn-c)(cn+1-c)對(duì)任意正整數(shù)n成立?若存在,求出通項(xiàng)cn和正數(shù)c;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案