19.已知(1+3x)n的展開式中含有x2的系數(shù)是54,則n=4.

分析 利用通項公式即可得出.

解答 解:(1+3x)n的展開式中通項公式:Tr+1=${∁}_{n}^{r}$(3x)r=3r${∁}_{n}^{r}$xr
∵含有x2的系數(shù)是54,∴r=2.
∴${3}^{2}{∁}_{n}^{2}$=54,可得${∁}_{n}^{2}$=6,∴$\frac{n(n-1)}{2}$=6,n∈N*
解得n=4.
故答案為:4.

點評 本題考查了二項式定理的通項公式,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.若雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線被圓(x-2)2+y2=4所截得的弦長為2,則C的離心率為(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=(  )
A.(-1,2)B.(0,1)C.(-1,0)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知△ABC是邊長為2的等邊三角形,P為平面ABC內一點,則$\overrightarrow{PA}$•($\overrightarrow{PB}$+$\overrightarrow{PC}$)的最小值是( 。
A.-2B.-$\frac{3}{2}$C.-$\frac{4}{3}$D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.執(zhí)行兩次如圖所示的程序框圖,若第一次輸入的x值為7,第二次輸入的x值為9,則第一次,第二次輸出的a值分別為( 。
A.0,0B.1,1C.0,1D.1,0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在心理學研究中,常采用對比試驗的方法評價不同心理暗示對人的影響,具體方法如下:將參加試驗的志愿者隨機分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過對比這兩組志愿者接受心理暗示后的結果來評價兩種心理暗示的作用,現(xiàn)有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,從中隨機抽取5人接受甲種心理暗示,另5人接受乙種心理暗示.
(Ⅰ)求接受甲種心理暗示的志愿者中包含A1但不包含B1的概率.
(Ⅱ)用X表示接受乙種心理暗示的女志愿者人數(shù),求X的分布列與數(shù)學期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.閱讀右面的程序框圖,運行相應的程序,若輸入N的值為24,則輸出N的值為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設a∈Z,已知定義在R上的函數(shù)f(x)=2x4+3x3-3x2-6x+a在區(qū)間(1,2)內有一個零點x0,g(x)為f(x)的導函數(shù).
(Ⅰ)求g(x)的單調區(qū)間;
(Ⅱ)設m∈[1,x0)∪(x0,2],函數(shù)h(x)=g(x)(m-x0)-f(m),求證:h(m)h(x0)<0;
(Ⅲ)求證:存在大于0的常數(shù)A,使得對于任意的正整數(shù)p,q,且$\frac{p}{q}$∈[1,x0)∪(x0,2],滿足|$\frac{p}{q}$-x0|≥$\frac{1}{A{q}^{4}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.某公司的組織結構圖如圖所示,則開發(fā)部的直接領導是總經理.

查看答案和解析>>

同步練習冊答案