精英家教網 > 高中數學 > 題目詳情

拋物線交于兩點AB,設拋物線的焦點為F,則|FA|+|FB|=          .

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,斜率為1的直線過拋物線y2=2px(p>0)的焦點,與拋物線交于兩點A、B,M為拋物線弧AB上的動點.
(1)若|AB|=8,求拋物線的方程;
(2)求S△ABM的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•閔行區(qū)二模)(文)斜率為1的直線過拋物線y2=4x的焦點,且與拋物線交于兩點A、B.
(1)求|AB|的值;
(2)將直線AB按向量
a
=(-2,0)
平移得直線m,N是m上的動點,求
NA
NB
的最小值.
(3)設C(2,0),D為拋物線y2=4x上一動點,證明:存在一條定直線l:x=a,使得l被以CD為直徑的圓截得的弦長為定值,并求出直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

拋物線方程為y2=8x,其焦點為F,過F的直線l與拋物線交于兩點A、B,它們的坐標分別是A(x1,y1),B(x2,y2),則x1x2=
 
,y1y2=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,斜率為1的直線過拋物線y2=2px(p>0)的焦點,與拋物線交于兩點A、B,將直線AB按向量
a
=(-p,0)
平移到直線l,N為l上的動點.
(1)若|AB|=8,求拋物線的方程;
(2)求
NA
NB
的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•閔行區(qū)二模)(理)斜率為1的直線過拋物線y2=2px(p>0)的焦點,且與拋物線交于兩點A、B.
(1)若p=2,求|AB|的值;
(2)將直線AB按向量
a
=(-p,0)
平移得直線m,N是m上的動點,求
NA
NB
的最小值.
(3)設C(p,0),D為拋物線y2=2px(p>0)上一動點,是否存在直線l,使得l被以CD為直徑的圓截得的弦長恒為定值?若存在,求出l的方程;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案