已知函數(shù) .
(Ⅰ)若,試確定函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若且對(duì)任意恒成立,試確定實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),求證:.
(Ⅰ)在單調(diào)遞增;在單調(diào)遞減 4分
(Ⅱ).
(Ⅲ).
解析試題分析:(Ⅰ),令,解得
當(dāng)時(shí),,在單調(diào)遞增;
當(dāng)時(shí),,在單調(diào)遞減 4分
(Ⅱ)為偶函數(shù),恒成立等價(jià)于對(duì)恒成立
解法1:當(dāng)時(shí),,令,解得
(1)當(dāng),即時(shí),在減,在增
,解得,
(2)當(dāng),即時(shí),,在上單調(diào)遞增,
,符合,
綜上,. 9分
解法2: 等價(jià)于對(duì)恒成立,
設(shè)則. 當(dāng)時(shí), ;當(dāng)時(shí), ;
時(shí),
(Ⅲ)
. 14分
考點(diǎn):應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,證明不等式恒。
點(diǎn)評(píng):難題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問題,在某區(qū)間,導(dǎo)數(shù)值非負(fù),函數(shù)為增函數(shù),導(dǎo)數(shù)值非正,函數(shù)為減函數(shù)。不等式證明問題,往往通過構(gòu)造函數(shù),轉(zhuǎn)化成了研究函數(shù)的最值,使問題得解。本題涉及不等式恒成立問題,通過研究函數(shù)的最值,解決了問題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)滿足,且 在上恒成立.
(1)求的值;
(2)若,解不等式;
(3)是否存在實(shí)數(shù),使函數(shù)在區(qū)間上有最小值?若存在,請(qǐng)求出實(shí)數(shù)的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知a>0,a≠1,設(shè)p:函數(shù)內(nèi)單調(diào)遞減,q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點(diǎn).如果p與q有且只有一個(gè)正確,求a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(為常數(shù)),且在點(diǎn)處的切線平行于軸.
(1)求實(shí)數(shù)的值;
(2)求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間; (2)若恒成立,求實(shí)數(shù)k的取值范圍;
(3)證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,若函數(shù)在處的切線方程為,
(1)求的值;
(2)求函數(shù)的單調(diào)區(qū)間。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com