已知a>0,a≠1,設(shè)p:函數(shù)內(nèi)單調(diào)遞減,q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點(diǎn).如果p與q有且只有一個(gè)正確,求a的取值范圍

,1,+

解析試題分析:當(dāng)0<a<1時(shí),函數(shù)在(0,+)內(nèi)單調(diào)遞減.
當(dāng)a>1時(shí),在(0,+)內(nèi)不是單調(diào)遞減函數(shù).
∴0<a<1                                          
曲線y=x2+(2a-3)x+1與x軸交于不同的兩點(diǎn)等價(jià)于(2a-3)2-4>0,即.                         
若p真q假,則(0,1){,11,]}=,1.
若p假q真,注意到已知a>0,a≠1,所以有
(1,+){(0,,+=(,+)  
綜上可知,,1,+).
考點(diǎn):對(duì)數(shù)的概念 命題的判斷
點(diǎn)評(píng):本題考查了對(duì)數(shù)函數(shù)的單調(diào)性、二次函數(shù)根的判定及否命題的知識(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)若在其定義域內(nèi)為單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;
(2)設(shè),且,若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè),其中是常數(shù),且
(1)求函數(shù)的極值;
(2)證明:對(duì)任意正數(shù),存在正數(shù),使不等式成立;
(3)設(shè),且,證明:對(duì)任意正數(shù)都有:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),曲線在點(diǎn)處的切線方程為
(1)確定的值
(2)若過點(diǎn)(0,2)可做曲線的三條不同切線,求的取值范圍
(3)設(shè)曲線在點(diǎn)處的切線都過點(diǎn)(0,2),證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=-2alnx(a>0)
(I)求函數(shù)f(x)的單調(diào)區(qū)間和最小值.
(II)若方程f(x)=2ax有唯一解,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/df/c/1kgq03.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù).
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)判斷函數(shù)的單調(diào)性;
(Ⅲ)若對(duì)任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),其中,區(qū)間
(Ⅰ)求的長(zhǎng)度(注:區(qū)間的長(zhǎng)度定義為);
(Ⅱ)給定常數(shù),當(dāng)時(shí),求長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) .
(Ⅰ)若,試確定函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若且對(duì)任意恒成立,試確定實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,函數(shù),.(的圖象連續(xù)不斷)
(1) 求的單調(diào)區(qū)間;
(2) 當(dāng)時(shí),證明:存在,使
(3) 若存在屬于區(qū)間,且,使,證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案