在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點O為極點x軸的正半軸為極軸建立極坐標(biāo)系, 曲線C
1的極坐標(biāo)方程為:
(1)求曲線C
1的普通方程
(2)曲線C
2的方程為
,設(shè)P、Q分別為曲線C
1與曲線C
2上的任意一點,求|PQ|的最小值
(1)
(2)
試題分析:解:(1)原式可化為
, 即
(2)依題意可設(shè)
由(Ⅰ)知圓C圓心坐標(biāo)(2,0)。
,
, 所以
.
點評:主要是考查了極坐標(biāo)于參數(shù)方程的運用,利用參數(shù)方程結(jié)合三角函數(shù)求解最值是解題的關(guān)鍵,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,橢圓
的頂點為
,焦點為
,
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)n 為過原點的直線,
是與n垂直相交于P點,與橢圓相交于A, B兩點的直線,
.是否存在上述直線
使
成立?若存在,求出直線
的方程;并說出;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在同一平面直角坐標(biāo)系中,經(jīng)過坐標(biāo)伸縮變換
后,曲線
C變?yōu)榍
,則曲線
C的方程為 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的左右焦點分別為
、
,離心率
,直線
經(jīng)過左焦點
.
(1)求橢圓
的方程;
(2)若
為橢圓
上的點,求
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若點
在以點
為焦點的拋物線
上,則
等于__________
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知雙曲線
的兩個焦點恰為橢圓
的兩個頂點,且離心率為2,則該雙曲線的標(biāo)準(zhǔn)方程為 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
拋物線
的準(zhǔn)線與
軸交于
,焦點為
,若橢圓
以
、
為焦點、且離心率為
.
(1)當(dāng)
時,求橢圓
的方程;
(2)若拋物線
與直線
及
軸所圍成的圖形的面積為
,求拋物線
和直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在極坐標(biāo)系中,已知圓
經(jīng)過點
,圓心為直線
與極軸的交點,求圓
的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
:
,左、右兩個焦點分別為
、
,上頂點
,
為正三角形且周長為6.
(1)求橢圓
的標(biāo)準(zhǔn)方程及離心率;
(2)
為坐標(biāo)原點,
是直線
上的一個動點,求
的最小值,并求出此時點
的坐標(biāo).
查看答案和解析>>