已知橢圓的左右焦點(diǎn)分別為、,離心率,直線經(jīng)過左焦點(diǎn).
(1)求橢圓的方程;
(2)若為橢圓上的點(diǎn),求的范圍.
(1)(2)

試題分析:解:(1)直線的交點(diǎn)的坐標(biāo)為,             1分
的坐標(biāo)為.                                     2分
設(shè)焦距為2,則.
  , .            5分
則橢圓的方程為.                           6分
(2)當(dāng)點(diǎn)在橢圓的左右頂點(diǎn)時(shí),;         7分
當(dāng)點(diǎn)不在橢圓的左右頂點(diǎn)時(shí),由定義可知:
.
當(dāng)且僅當(dāng)時(shí) “”成立;                   9分
中有
 10分
,        12分
;                            13分
由上述可得的取值范圍為.                         14分
點(diǎn)評(píng):考查了橢圓的性質(zhì)來求解方程,以及結(jié)合三角形中的余弦定理來得到角的范圍,屬于中檔題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的左右焦點(diǎn)分別是,設(shè)是雙曲線右支上一點(diǎn),上投影的大小恰好為,且它們的夾角為,則雙曲線的離心率為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓C以拋物線的焦點(diǎn)為右焦點(diǎn),且經(jīng)過點(diǎn)A(2,3).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若分別為橢圓的左右焦點(diǎn),求的角平分線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合.(Ⅰ)求拋物線的方程;
(Ⅱ)動(dòng)直線恒過點(diǎn)與拋物線交于A、B兩點(diǎn),與軸交于C點(diǎn),請(qǐng)你觀察并判斷:在線段MA,MB,MC,AB中,哪三條線段的長(zhǎng)總能構(gòu)成等比數(shù)列?說明你的結(jié)論并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的左右焦點(diǎn)分別為、,由4個(gè)點(diǎn)、、組成一個(gè)高為,面積為的等腰梯形.
(1)求橢圓的方程;
(2)過點(diǎn)的直線和橢圓交于、兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知過拋物線y2 =2px(p>0)的焦點(diǎn)F的直線x-my+m=0與拋物線交于A,B兩點(diǎn),且△OAB(O為坐標(biāo)原點(diǎn))的面積為2,則m6+ m4的值為(   )
A.1B. 2 C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線Cl:y2= 2x的焦點(diǎn)為F1,拋物線C2:y=2x2的焦點(diǎn)為F2,則過F1且與F1F2垂直的直線的一般方程式為
A.2x- y-l=0B.2x+ y-1=0
C.4x-y-2 =0D.4x-3y-2 =0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn)x軸的正半軸為極軸建立極坐標(biāo)系, 曲線C1的極坐標(biāo)方程為:
(1)求曲線C1的普通方程
(2)曲線C2的方程為,設(shè)P、Q分別為曲線C1與曲線C2上的任意一點(diǎn),求|PQ|的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,點(diǎn)A、B、C在數(shù)軸上,點(diǎn)B、C關(guān)于點(diǎn)A對(duì)稱,若點(diǎn)A、B對(duì)應(yīng)的實(shí)數(shù)分別是和-1,則點(diǎn)C所對(duì)應(yīng)的實(shí)數(shù)是
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案