中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸的雙曲線C的兩條漸近線與圓(x-2)2+y2=1都相切,則雙曲線C的離心率是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
C
分析:根據(jù)題意,由圓的切線求得雙曲線的漸近線的方程,再分焦點(diǎn)在x、y軸上兩種情況討論,進(jìn)而求得雙曲線的離心率.
解答:設(shè)雙曲線C的漸近線方程為y=kx,是圓的切線得:
,
∴k=
得雙曲線的一條漸近線的方程為 ,
∴焦點(diǎn)在x、y軸上兩種情況討論:
①當(dāng)焦點(diǎn)在x軸上時(shí)有:,e==;
②當(dāng)焦點(diǎn)在y軸上時(shí)有:,e=;
∴求得雙曲線的離心率 或2.
故選C.
點(diǎn)評(píng):本小題主要考查直線與圓的位置關(guān)系、雙曲線的簡(jiǎn)單性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想.解題的關(guān)鍵是:由圓的切線求得直線 的方程,再由雙曲線中漸近線的方程的關(guān)系建立等式,從而解出雙曲線的離心率的值.此題易忽視兩解得出錯(cuò)誤答案.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸的雙曲線的漸近線方程為y=±
2
2
x
,且雙曲線過(guò)點(diǎn)P(2,1),則雙曲線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7、中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸的雙曲線的漸近線方程為y=±x,且雙曲線過(guò)點(diǎn)P(2,1),則雙曲線的標(biāo)準(zhǔn)方程為
x2-y2=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸的橢圓過(guò)點(diǎn)P(3,0),且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的3倍,則其標(biāo)準(zhǔn)方程為
x2
9
+y2=1
y2
81
+
x2
9
=1
x2
9
+y2=1
y2
81
+
x2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸的橢圓T經(jīng)過(guò)P(1,
6
3
),Q(
2
3
3
)

(I)求橢圓T的標(biāo)準(zhǔn)方程;
(II)橢圓T上是否存在點(diǎn)E(m,n)使得直線l:x=my+n交橢圓于M,N兩點(diǎn),且
OM
ON
=0
?若存在求出點(diǎn)E坐標(biāo);若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸的雙曲線C的兩條漸近線與圓(x-2)2+y2=1都相切,則雙曲線C的離心率是
2
3
3
或2
2
3
3
或2

查看答案和解析>>

同步練習(xí)冊(cè)答案