6.若a∈[0,5],則方程x2+2ax+3a-2=0有兩個(gè)負(fù)根的概率為( 。
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{1}{3}$D.$\frac{3}{5}$

分析 首先求出滿足方程x2+2ax+3a-2=0有兩個(gè)負(fù)根的a的范圍,然后利用區(qū)間長度比求概率.

解答 解:方程x2+2ax+3a-2=0有兩個(gè)負(fù)根的等價(jià)條件為$\left\{\begin{array}{l}{△=4{a}^{2}-12a+8≥0}\\{3a-2>0}\\{-2a<0}\end{array}\right.$
解得a≥2,
在a∈[0,5]條件下的a的范圍為[2,5],
由幾何概型的公式得到在a∈[0,5],
方程x2+2ax+3a-2=0有兩個(gè)負(fù)根的概率為$\frac{5-2}{5}=\frac{3}{5}$;
故選:D

點(diǎn)評(píng) 本題考查了幾何概型的概率求法;利用區(qū)間長度比求一個(gè)變量的幾何概型是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=e1-x(-a+cosx),a∈R.
(1)若函數(shù)f(x)存在單調(diào)增區(qū)間,求實(shí)數(shù)a的取值范圍;
(2)若a=0,證明:$?x∈[-\frac{1}{2},1]$,總有f(x-1)+2f′(-x)cos(x-1)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知直線l的方程為3x+4y-25=0,則圓x2+y2=1上的點(diǎn)到直線l的最大距距離是( 。
A.1B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.拋擲兩次骰子,記第一次得到的點(diǎn)數(shù)為m,第二次得到的點(diǎn)數(shù)為n.
(1)求m+n≤4的概率;
(2)求m<n+2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(Ⅰ)請(qǐng)默寫兩角和與差的余弦公式(C(α+β),C(α-β)),并用公式C(α-β)證明公式C(α+β)C(α+β):cos(α+β)=cosαcosβ-sinαsinβ;C(α-β):cos(α-β)=cosαcosβ+sinαsinβ.
(Ⅱ)在平面直角坐標(biāo)系中,兩點(diǎn)A(x1,y1),B(x2,y2)間的距離公式是:$|{AB}|=\sqrt{{{({{x_2}-{x_1}})}^2}+{{({{y_2}-{y_1}})}^2}}$,如圖,點(diǎn)A(1,0),P1(cosα,sinα),P2(cos(-β),sin(-β)),P(cos(α+β),sin(α+β)),請(qǐng)從這個(gè)圖出發(fā),推導(dǎo)出兩角和的余弦公式(C(α+β))(注:不能用向量方法).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.把函數(shù)y=sinx的圖象向左平移$\frac{π}{6}$個(gè)單位長度,所得到的圖象的函數(shù)表達(dá)式為y=sin(x+$\frac{π}{6}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知定點(diǎn)F(1,0),定直線l:x=4,動(dòng)點(diǎn)P到點(diǎn)F的距離與到直線l的距離之比等于$\frac{1}{2}$.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡E的方程;
(Ⅱ)設(shè)軌跡E與x軸負(fù)半軸交于點(diǎn)A,過點(diǎn)F作不與x軸重合的直線交軌跡E于兩點(diǎn)B、C,直線AB、AC分別交直線l于點(diǎn)M、N.試問:在x軸上是否存在定點(diǎn)Q,使得$\overrightarrow{QM}•\overrightarrow{QN}=0$?若存在,求出定點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的一個(gè)焦點(diǎn)為F(1,0),其離心率為$\frac{{\sqrt{2}}}{2}$.
(1)求橢圓C的方程;
(2)直線y=x+m與C相交于A,B兩點(diǎn),若$\overrightarrow{OA}•\overrightarrow{OB}=-1$(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某校園內(nèi)有一塊三角形綠地AEF(如圖1),其中AE=20m,AF=10m,∠EAF=$\frac{2π}{3}$,綠地內(nèi)種植有一呈扇形AMN的花卉景觀,扇形AMN的兩邊分別落在AE和AF上,圓弧MN與EF相切于點(diǎn)P.
(1)求扇形花卉景觀的面積;
(2)學(xué)校計(jì)劃2017年年整治校園環(huán)境,為美觀起見,設(shè)計(jì)在原有綠地基礎(chǔ)上擴(kuò)建成平行四邊形ABCD(如圖2),其中∠BAD=$\frac{2π}{3}$,并種植兩塊面積相同的扇形花卉景觀,兩扇形的邊都分別落在平行四邊形ABCD的邊上,圓弧都與BD相切,若扇形的半徑為8m,求平行四邊形ABCD綠地占地面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案