如圖,過點(diǎn)D做圓的切線切于B點(diǎn),作割線交圓于A,C兩點(diǎn),其中BD=3,AD=4,則AC=
 
考點(diǎn):與圓有關(guān)的比例線段
專題:直線與圓
分析:由切割線定理得BD2=DC•DA,由此能求出AC長(zhǎng).
解答: 解:∵過點(diǎn)D做圓的切線切于B點(diǎn),
作割線交圓于A,C兩點(diǎn),其中BD=3,AD=4,
∴BD2=DC•DA,
∴DC=
BD2
DA
=
9
4
,
∴AC=4-
9
4
=
7
4

故答案為:
7
4
點(diǎn)評(píng):本題考查線段長(zhǎng)的求法,是基礎(chǔ)題,解題時(shí)要注意切割線定理的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α∈(0,π)若sinα+cosα=
17
25
,則cosα=( 。
A、-
7
25
B、
7
25
C、-
24
25
D、
24
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合U={-1,0,1,2,3},P={-1,2,3},則∁UP=(  )
A、{0,1}
B、{-1,0,1}
C、{0,1,2}
D、{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x+1
x
,數(shù)列{an}滿足a1=1,an+1=f(
1
an
), n∈N*

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令Tn=a1-a2+a3-a4+…+a2n-1-a2n,求Tn;
(3)令bn=
1
an-1an
(n≥2),b1=3,Sn=b1+b2+…+bn,Sn
m-2005
2
對(duì)一切n∈N*成立,求最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)滿足f(4)=-3,且對(duì)任意x∈R總有f′(x)<3,則不等式f(x)<3x-15的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)統(tǒng)計(jì),用于數(shù)學(xué)學(xué)習(xí)的時(shí)間(單位:小時(shí))與成績(jī)(單位:分)近似于線性相關(guān)關(guān)系.對(duì)某小組學(xué)生每周用于數(shù)學(xué)的學(xué)習(xí)時(shí)間x與數(shù)學(xué)成績(jī)y進(jìn)行數(shù)據(jù)收集如表:
x1516181922
y10298115115120
由表中樣本數(shù)據(jù)求得回歸方程為
y
=
b
x+
a
,且直線l:x+18y=100上,則點(diǎn)(
a
,
b
)滿足( 。
A、在l左側(cè)B、在l右側(cè)
C、在l上D、無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的通項(xiàng)公式an=2n-9,(n∈N+) 則|a1|+|a2|+|a3|+…+|a10|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用二項(xiàng)式定理證明:
(1)32n+2-8n-9能被64整除(n∈N);
(2)2n>n2(n≥5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的個(gè)數(shù)是( 。
①“在三角形ABC中,若sinA>sinB,則A>B”的逆命題是真命題;
②命題p:x≠2或y≠3,命題q:x+y≠5則p是q的必要不充分條件;
③“?x∈R,x3-x2+1≤0”的否定是“?x∈R,x3-x2+1>0”;
④從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是系統(tǒng)抽樣.
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案