已知函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為常數(shù),e=2.718…,且函數(shù)y=f(x)和y=g(x)的圖像在它們與坐標(biāo)軸交點(diǎn)處的切線互相平行.
(1)求常數(shù)a的值;(2)若存在x使不等式>成立,求實(shí)數(shù)m的取值范圍;
(3)對(duì)于函數(shù)y=f(x)和y=g(x)公共定義域內(nèi)的任意實(shí)數(shù)x0,我們把|f(x0)-g(x0)|的值稱為兩函數(shù)在x0處的偏差.求證:函數(shù)y=f(x)和y=g(x)在其公共定義域內(nèi)的所有偏差都大于2.
(1) a=1.(2) (-∞,0).(3)詳見解析.
【解析】
試題分析:(1)求出交點(diǎn),切線平行即導(dǎo)數(shù)值相等可解;(2)轉(zhuǎn)化為新函數(shù),求出導(dǎo)數(shù),利用單調(diào)性極值解;(3)構(gòu)造新函數(shù)求導(dǎo),利用單調(diào)性證明.
試題解析:(1)f(x)與坐標(biāo)軸的交點(diǎn)為(0,a),f′(0)=a,g(x)與坐標(biāo)軸的交點(diǎn)為(a,0),g′(a)=.
∴a=,得a=±1,又a>0,故a=1.
(2>可化為m<x-ex.令h(x)=x-ex,則h′(x)=1-()ex.
∵x>0,∴+≥,ex>1(+)ex>1.故h′(x)<0.
∴h(x)在(0,+∞)上是減函數(shù),因此h(x)<h(0)=0. ∴實(shí)數(shù)m的取值范圍是(-∞,0).
(3)y=f(x)與y=g(x)的公共定義域?yàn)?0,+∞),|f(x)-g(x)|=|ex-lnx|=ex-lnx.
令h(x)=ex-x-1,則h′(x)=ex-1>0.∴h(x)在(0,+∞)上是增函數(shù).
故h(x)>h(0)=0,即ex-1>x. ①
令m(x)=lnx-x+1,則m′(x)=-1.
當(dāng)x>1時(shí),m′(x)<0,當(dāng)0<x<1時(shí),m′(x)>0.∴m(x)有最大值m(1)=0,因此lnx+1<x. 、
由①②,得ex-1>lnx+1,即ex-lnx>2.
∴ 函數(shù)y=f(x)和y=g(x)在其公共定義域內(nèi)的所有偏差都大于2.
考點(diǎn):導(dǎo)數(shù)幾何意義、極值、導(dǎo)數(shù)的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省南昌市高一5月聯(lián)考數(shù)學(xué)卷(解析版) 題型:解答題
已知函數(shù)f(x)= (a、b為常數(shù)),且方程f(x)-x+12=0有兩個(gè)實(shí)根為x1=3,x2=4.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)k>1,解關(guān)于x的不等式f(x)< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆遼寧盤錦市高一第一次階段考試數(shù)學(xué)試卷(解析版) 題型:解答題
(12分)已知函數(shù)f(x)= (a,b為常數(shù),且a≠0),滿足f(2)=1,方程f(x)=x有唯一實(shí)數(shù)解,求函數(shù)f(x)的解析式和f[f(-4)]的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省萊蕪市高三上學(xué)期10月測(cè)試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分l2分)
已知函數(shù)f(x)=a-
(1)求證:函數(shù)y=f(x)在(0,+∞)上是增函數(shù);
(2)若f(x)<2x在(1,+∞)上恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖南省十二校高三第一次聯(lián)考數(shù)學(xué)文卷 題型:解答題
( (本小題滿分13分)
已知函數(shù)f(x)=(a-1)x+aln(x-2),(a<1).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)設(shè)a<0時(shí),對(duì)任意x1、x2∈(2,+∞),<-4恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆黑龍江省高一期末考試文科數(shù)學(xué) 題型:解答題
(12分)已知函數(shù)f(X)=㏒a(ax-1) (a>0且a≠1)
(1)求函數(shù)的定義域 (2)討論函數(shù)f(X)的單調(diào)性
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com