【題目】已知函數(shù)f(x)= 若關(guān)于x的方程f(x)=t有三個(gè)不同的解,其中最小的解為a,則 的取值范圍為 .
【答案】
【解析】解:當(dāng)x<0時(shí),f(x)為增函數(shù),且當(dāng)x→﹣∞時(shí),f(x)→﹣ .
當(dāng)x>0時(shí),f′(x)= ,
∴當(dāng)0<x<e時(shí),f′(x)>0,f(x)單調(diào)遞增,
當(dāng)x>e時(shí),f′(x)<0,f(x)單調(diào)遞減,
又當(dāng)x→0時(shí),f(x)→﹣∞,當(dāng)x→+∞時(shí),f(x)→0,
∴當(dāng)x=e時(shí),f(x)取得極大值f(e)= .
作出f(x)在定義域的函數(shù)圖象如圖所示:
∵f(x)=t有三解,∴0 ,
令﹣ =t得x=﹣ ,即a=﹣ ,
∴ =﹣ ﹣ ,
令g(t)=﹣ ﹣ ,則g(t)在(0, )上單調(diào)遞減,
∴﹣ <g(t)<0.
所以答案是: .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校做了一次關(guān)于“感恩父母”的問卷調(diào)查,從8~10歲,11~12歲,13~14歲,15~16歲四個(gè)年齡段回收的問卷依次為:120份,180份,240份,x份.因調(diào)查需要,從回收的問卷中按年齡段分層抽取容量為300的樣本,其中在11~12歲學(xué)生問卷中抽取60份,則在15~16歲學(xué)生中抽取的問卷份數(shù)為( )
A.60
B.80
C.120
D.180
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C在直角坐標(biāo)系xOy下的參數(shù)方程為 (θ為參數(shù)).以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程; (Ⅱ)直線l的極坐標(biāo)方程是ρcos(θ﹣ )=3 ,射線OT:θ= (ρ>0)與曲線C交于A點(diǎn),與直線l交于B,求線段AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知PA⊥平面ABCD,且四邊形ABCD為矩形,M、N分別是AB、PC的中點(diǎn).
(1)求證:MN⊥CD;
(2)若∠PDA=45°,求證:MN⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若指數(shù)函數(shù)f(x)的圖象過點(diǎn)(﹣2,4),則f(3)=;不等式f(x)+f(﹣x)< 的解集為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 是奇函數(shù)且當(dāng) 時(shí)是減函數(shù),若 ,則函數(shù) 的零點(diǎn)共有( )
A.4個(gè)
B.5個(gè)
C.6個(gè)
D.7個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f:A→B是A到B的一個(gè)映射,其中 ,f:(x,y)→(x-y,x+y),求與A中的元素(-1,2)相對(duì)應(yīng)的B中的元素和與B中的元素(-1,2)相對(duì)應(yīng)的A中的元素.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,平面 平面 ,四邊形 為平行四邊形, , , , .
(1)求證: 平面 ;
(2)求 到平面 的距離;
(3)求三棱錐 的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com