10.下表是某地銀行連續(xù)五年的儲蓄存款(年底余額),假設(shè)儲蓄存款y關(guān)于年份x的線性回歸方程為 $\hat y=\hat bx+\hat a$,則$\hat b$=1.2.
($\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,其中1×5+2×6+3×7+4×8+5×10=120,12+22+32+42+52=55)
年份x12345
儲蓄存款y(千億元)567810

分析 求出$\overline{x}$=3,$\overline{y}$=7.2,利用公式可得結(jié)論.

解答 解:由題意,$\overline{x}$=3,$\overline{y}$=7.2,
∵1×5+2×6+3×7+4×8+5×10=120,12+22+32+42+52=55,
∴$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$=$\frac{120-5×3×7.2}{55-5×{3}^{2}}$=1.2,
故答案為1.2.

點(diǎn)評 本題考查線性回歸方程,考查學(xué)生的計算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)向量$\overrightarrow a$與$\overrightarrow b$的夾角為θ,且$\overrightarrow a=({-2,1}),\overrightarrow a+2\overrightarrow b=({2,3})$,則cosθ=( 。
A.$-\frac{3}{5}$B.$\frac{3}{5}$C.$\frac{{\sqrt{5}}}{5}$D.$-\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若{1,2}?A⊆{1,2,3,4,5},則滿足條件的集合A的個數(shù)是(  )
A.6B.8C.7D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若從3個海濱城市和兩個內(nèi)陸城市中隨機(jī)選2個去旅游,那么概率是$\frac{7}{10}$的事件是( 。
A.至少選一個海濱城市B.恰好選一個海濱城市
C.至多選一個海濱城市D.兩個都選海濱城市

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知i是虛數(shù)單位,則復(fù)數(shù)(1+i)2的虛部是(  )
A.2B.-2C.2iD.-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}的前n項和為Sn,${a_1}=-\frac{2}{3}$,滿足${S_n}+\frac{1}{S_n}+2={a_n}(n≥2)$.
(1)計算S1,S2,S3,猜想Sn的一個表達(dá)式(不需要證明).
(2)設(shè)${b_n}=\frac{S_n}{{{n^2}+n}}$,數(shù)列{bn}的前n項和為Tn,求證:${T_n}>-\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若(x2+1)(x-3)9=ao+a1(x-2)+a2(x-2)2+a3(x-2)3+…+a11(x-2)11,則a1+a2+…+a11=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某工廠生產(chǎn)產(chǎn)生的廢氣必須經(jīng)過過濾后才能排放,已知在過濾過程中,廢氣中的污染物含量p(單位:毫克/升)與過濾時間t(單位:小時)之間的關(guān)系為:$p(t)={p_0}{e^{-kt}}$(式中的e為自然對數(shù)的底,p0為污染物的初始含量).過濾1小時后檢測,發(fā)現(xiàn)污染物的含量減少了$\frac{1}{5}$.
(Ⅰ)求函數(shù)關(guān)系式p(t);
(Ⅱ)要使污染物的含量不超過初始值的$\frac{1}{1000}$,至少還需過濾幾小時?(lg2≈0.3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知x1,x2是函數(shù)f(x)=2sin2x+cos2x-m在[0,$\frac{π}{2}$]內(nèi)的兩個零點(diǎn),則sin(x1+x2)=$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

同步練習(xí)冊答案