已知橢圓=1(a>b>0)的右焦點為F,經(jīng)過點F作傾斜角為135°的直線l交橢圓于A、B兩點,線段AB的中點為M,且直線AB與OM的夾角為,且tan=3,求這個橢圓離心率.

答案:
解析:

  解:設點A(x1,y1)、B(x2,y2),AB的中點為M(x0,y0),則=1,=1,兩式相減可得KAB=-1,所以,又kOM=1-e2,而||=tan=3,故kOM或kOM=2(∵a>b,,∴kOM=2舍去),所以1-e2,e=為所求.

  分析:本題先根據(jù)題意求出直線AB的斜率,再依據(jù)直線與橢圓的方程聯(lián)立消去其中一個未知數(shù),找到相應的兩個交點A、B的橫(或縱)坐標之間的關系,從而表示出相應的中點M的坐標,從而將問題解決.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:013

已知橢圓=1(a>b>0)的離心率為,則雙曲線=1的離心率為

[  ]

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:2009年高考數(shù)學理科(四川卷) 題型:044

已知橢圓=1(a>b>0)的左右焦點分別為F1,F(xiàn)2,離心率e=,右準線方程為x=2.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)過點F1的直線l與該橢圓交于M,N兩點,且,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河北省高三3月月考數(shù)學試卷(解析版) 題型:解答題

如圖,已知橢圓=1(a>b>0)的離心率為,以該橢圓上的點和橢圓的左、右焦點F1、F2為頂點的三角形的周長為4(+1),一等軸雙曲線的頂點是該橢圓的焦點,設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.

(1)求橢圓和雙曲線的標準方程;

(2)設直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;

(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知橢圓=1(ab>0)過點(1,),離心率為,左、右焦點分別為F1、F2.點P為直線lxy=2上且不在x軸上的任意一點,直線PF1PF2與橢圓的交點分別為A、BC、DO為坐標原點.

(1)求橢圓的標準方程.

(2)設直線PF1、PF2的斜率分別為k1、k2.

(ⅰ)證明:=2.

(ⅱ)問直線l上是否存在點P,使得直線OA、OBOC、OD的斜率kOA、kOB、kOCkOD滿足kOAkOBkOCkOD=0?若存在,求出所有滿足條件的點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知橢圓=1(ab>0)的離心率為,以該橢圓上的點和橢圓的左、右焦點F1、F2為頂點的三角形的周長為4(+1),一等軸雙曲線的頂點是該橢圓的焦點,設P為該雙曲線上異于頂點的任一點,直線PF1PF2與橢圓的交點分別為A、BCD.

(1)求橢圓和雙曲線的標準方程;

(2)設直線PF1PF2的斜率分別為k1、k2,證明:k1·k2=1;

(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案