【題目】如圖,在四棱錐中,底面,底面為矩形,的中點(diǎn),且,.

(1)求證:平面

(2)若點(diǎn)為線段上一點(diǎn),且,求四棱錐的體積.

【答案】(1)見(jiàn)解析 (2)6

【解析】

1)連接于點(diǎn),得出點(diǎn)的中點(diǎn),利用中位線的性質(zhì)得出,再利用直線與平面平行的判定定理可得出平面;

2)過(guò),由平面,得出平面,可而出,結(jié)合,可證明出平面,可得出,并計(jì)算出,利用平行線的性質(zhì)求出的長(zhǎng),再利用錐體的體積公式可計(jì)算出四棱錐的體積.

1)連接,連接.

四邊形為矩形,中點(diǎn).

中點(diǎn),.

平面平面,

平面;

2)過(guò).

平面,平面.

平面,.

,平面,

平面.連接,則,

是矩形,易證,而,,得,

,∴.

又矩形的面積為8,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年春季,世界各地相繼出現(xiàn)流感疫情,這已經(jīng)成為全球性的公共衛(wèi)生問(wèn)題.為了考察某種流感疫苗的效果,某實(shí)驗(yàn)室隨機(jī)抽取100只健康小鼠進(jìn)行試驗(yàn),得到如下列聯(lián)表:

感染

未感染

總計(jì)

注射

10

40

50

未注射

20

30

50

總計(jì)

30

70

100

參照附表,在犯錯(cuò)誤的概率最多不超過(guò)__________的前提下,可認(rèn)為“注射疫苗”與“感染流感”有關(guān)系.

(參考公式:.)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知平面,為矩形,分別為的中點(diǎn),.

(1)求證:平面;

(2)求證:面平面

(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一塊各面均涂有油漆的正方體被鋸成27個(gè)大小相同的小正方體,若將這些小正方體均勻地?cái)嚮煸谝黄穑瑥闹腥我馊〕鲆粋(gè),則取出的小正方體兩面涂有油漆的概率是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,PD⊥平面ABCD,E為PB上的點(diǎn),且2BE=EP.

(1)證明:AC⊥DE;
(2)若PC= BC,求二面角E﹣AC﹣P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)).在極坐標(biāo)系(與平面直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,直線的方程為.

(Ⅰ)求圓的普通方程及直線的直角坐標(biāo)方程;

(Ⅱ)設(shè)平面直角坐標(biāo)系中的點(diǎn),經(jīng)過(guò)點(diǎn)傾斜角為的直線相交于,兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于有表格中的數(shù)據(jù),線性相關(guān),由最小二乘法得.

2

4

5

6

8

30

40

60

50

70

(1)求的線性回歸方程

(2)現(xiàn)有第二個(gè)線性模型:,且.若與(1)的線性模型比較,哪一個(gè)線性模型擬合效果比較好,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩地相距千米,汽車從地勻速行駛到地,速度不超過(guò)千米小時(shí),已知汽車每小時(shí)的運(yùn)輸成本(單位:元)由可變部分和固定部分兩部分組成:可變部分與速度的平方成正比,比例系數(shù)為,固定部分為元,

(1)把全程運(yùn)輸成本()表示為速度(千米小時(shí))的函效:并求出當(dāng)時(shí),汽車應(yīng)以多大速度行駛,才能使得全程運(yùn)輸成本最。

(2)隨著汽車的折舊,運(yùn)輸成本會(huì)發(fā)生一些變化,那么當(dāng),此時(shí)汽車的速度應(yīng)調(diào)整為多大,才會(huì)使得運(yùn)輸成本最小,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1, =9a2a6.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案