【題目】已知函數(shù) .

(1)若在處,圖象的切線平行,求的值;

(2)設(shè)函數(shù),討論函數(shù)零點(diǎn)的個(gè)數(shù).

【答案】(1)(2)見解析

【解析】

試題(1)根據(jù)導(dǎo)數(shù)幾何意義得解得(2)按正負(fù)討論函數(shù)單調(diào)性及值域:當(dāng)時(shí),單增,, 沒(méi)有零點(diǎn); 當(dāng)時(shí),有唯一的零點(diǎn); 當(dāng)時(shí),上單調(diào)遞減,在上單調(diào)遞增,;單增,,所以時(shí)個(gè)零點(diǎn);時(shí)個(gè)零點(diǎn).

試題解析:(1)

,得,所以,即

(2)(1)當(dāng)時(shí),單增,

,故時(shí),沒(méi)有零點(diǎn).

(2)當(dāng)時(shí),顯然有唯一的零點(diǎn)

(3)當(dāng)時(shí),設(shè),

,故上單調(diào)遞增,在上單調(diào)遞減,

所以,,即 上單調(diào)遞減,在上單調(diào)遞增,(當(dāng)且僅當(dāng)等號(hào)成立)有兩個(gè)根(當(dāng)時(shí)只有一個(gè)根

單增,令為減函數(shù),

只有一個(gè)根.

時(shí)個(gè)零點(diǎn);時(shí)個(gè)零點(diǎn);時(shí)個(gè)零點(diǎn);時(shí)個(gè)零點(diǎn);時(shí),個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求證:函數(shù)有唯一零點(diǎn);

(2)若對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,給出滿足的條件,就能得到動(dòng)點(diǎn)的軌跡方程,下表給出了一些條件及方程:

條件

方程

周長(zhǎng)為

面積為

中,

則滿足條件①,②,的軌跡方程依次為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)拋物線y24x焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),交其準(zhǔn)線于點(diǎn)C,且A、C位于x軸同側(cè),若|AC|2|AF|,則|BF|等于( 。

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知甲盒子中有個(gè)紅球,個(gè)藍(lán)球乙盒子中有個(gè)紅球,個(gè)藍(lán)球,同時(shí)從甲乙兩個(gè)盒子中取出個(gè)球進(jìn)行交換,(a)交換后,從甲盒子中取1個(gè)球是紅球的概率記為.(b)交換后,乙盒子中含有紅球的個(gè)數(shù)記為.則(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線和虛線畫出的是某幾何體的三視圖,則該幾何休的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,則函數(shù)具有性質(zhì)__________.(填入所有正確性質(zhì)的序號(hào))

①最大值為,圖象關(guān)于直線對(duì)稱;

②圖象關(guān)于軸對(duì)稱;

③最小正周期為;

④圖象關(guān)于點(diǎn)對(duì)稱;

⑤在上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】王老師的班上有四個(gè)體育健將甲、乙、丙、丁,他們都特別擅長(zhǎng)短跑,在某次運(yùn)動(dòng)會(huì)上,他們四人要組成一個(gè)米接力隊(duì),王老師要安排他們四個(gè)人的出場(chǎng)順序,以下是他們四人的對(duì)話:

甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;

丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒;

王老師聽了他們四人的對(duì)話,安排了一種合理的出場(chǎng)順序,滿足了他們的所有要求, 據(jù)此我們可以斷定,在王老師安排的出場(chǎng)順序中,跑第三棒的人是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)有兩個(gè)極值點(diǎn),,且

)求的取值范圍,并討論的單調(diào)性.

)證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案