如圖10-5所示,過原點引直線交圓x2+(y-1)2=1于Q點,在該直線上取P點,使P到直線y=2的距離等于|PQ|,求P點的軌跡方程。

 [解]  設直線OP的參數(shù)方程為(t參數(shù))。

代入已知圓的方程得t2-t•2sinα=0.

所以t=0或t=2sinα。所以|OQ|=2|sinα|,而|OP|=t.

所以|PQ|=|t-2sinα|,而|PM|=|2-tsinα|.

所以|t-2sinα|=|2-tsinα|. 化簡得t=2或t=-2或sinα=-1.

當t=±2時,軌跡方程為x2+y2=4;當sinα=1時,軌跡方程為x=0.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

選修4-1:幾何證明選講
如圖所示,PA為⊙O的切線,A為切點,PBC是過點O的割線,PA=10,PB=5,∠BAC的平分線與BC和⊙O分別交于點D和E.
(Ⅰ)求證:
AB
AC
=
PA
PC

(Ⅱ)求AD•AE的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

傳說古希臘畢達哥拉斯學派的數(shù)學家經(jīng)常在沙灘上畫點或用小石子表示數(shù).他們研究過如圖所示的三角形數(shù):將三角形數(shù)1,3,6,10,…記為數(shù)列{an},將可被5整除的三角形數(shù)按從小到大的順序組成一個新數(shù)列{bn}.可以推測:b2012是數(shù)列{an}中的第
5030
5030
項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湖北)傳說古希臘畢達哥拉斯學派的數(shù)學家經(jīng)常在沙灘上面畫點或用小石子表示數(shù).他們研究過如圖所示的三角形數(shù):
將三角形數(shù)1,3,6,10,…記為數(shù)列{an},將可被5整除的三角形數(shù)按從小到大的順序組成一個新數(shù)列{bn},可以推測:
(Ⅰ)b2012是數(shù)列{an}中的第
5030
5030
項;
(Ⅱ)b2k-1=
5k(5k-1)
2
5k(5k-1)
2
.(用k表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湖南模擬)傳說古希臘畢達哥拉斯學派的數(shù)學家經(jīng)常在沙灘上畫點或用小石子表示數(shù).他們研究過如圖所示的三角形數(shù):

將三角形數(shù)1,3,6,10,…記為數(shù)列{an},將可被5整除的三角形數(shù)按從小到大的順序組成一個新數(shù)列{bn}.可以推測:
(Ⅰ)b3是數(shù)列{an}中的第
9
9
項;
(Ⅱ)b2k=
5k(5k+1)
2
5k(5k+1)
2
(用k表示)

查看答案和解析>>

同步練習冊答案