(2012•湖南模擬)傳說古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家經(jīng)常在沙灘上畫點或用小石子表示數(shù).他們研究過如圖所示的三角形數(shù):

將三角形數(shù)1,3,6,10,…記為數(shù)列{an},將可被5整除的三角形數(shù)按從小到大的順序組成一個新數(shù)列{bn}.可以推測:
(Ⅰ)b3是數(shù)列{an}中的第
9
9
項;
(Ⅱ)b2k=
5k(5k+1)
2
5k(5k+1)
2
(用k表示)
分析:(Ⅰ)由題設(shè)條件及圖可得出an+1=an+(n+1),由此遞推式可以得出數(shù)列{an}的通項,由此可列舉出三角形數(shù)1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,…,從而可得結(jié)論;
(II)由于2k是偶數(shù),由(I)知,第2k個被5整除的數(shù)出現(xiàn)在第k組倒數(shù)第一個,故它是數(shù)列{an}中的第k×5=5k項,由此可得結(jié)論.
解答:解:(I)由題設(shè)條件可以歸納出an+1=an+(n+1),
故an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=n+(n-1)+…+2+1=
1
2
n(n+1)
由此知,三角數(shù)依次為1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,…
由此知,第3個可被5整除的數(shù)為45,是數(shù)列{an}中的第9項;
(II)由于2k是偶數(shù),由(I)知,第2k個被5整除的數(shù)出現(xiàn)在第k組倒數(shù)第一個,故它是數(shù)列{an}中的第k×5=5k項,
所以b2k=
5k(5k+1)
2

故答案為:9,
5k(5k+1)
2
點評:本題考查數(shù)列的遞推關(guān)系,數(shù)列的表示及歸納推理,解題的關(guān)鍵是由題設(shè)得出相鄰兩個三角形數(shù)的遞推關(guān)系,由此列舉出三角形數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖南模擬)已知函數(shù)f(x)=
1
2
x2+x-(x+1)ln(x+1)

(1)判斷f(x)的單調(diào)性;
(2)記φ(x)=f′(x-1)-k(x-1),若函數(shù)φ(x)有兩個零點x1,x2(x1<x2),求證:φ′(
x1+x2
2
)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖南模擬)已知向量
m
=(2cos2x,
3
),
n
=(1,sin2x)
,函數(shù)f(x)=
m
n

(1)求函數(shù)f(x)的對稱中心;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,且f(C)=3,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖南模擬)設(shè)函數(shù)y=f(x)在區(qū)間(a,b)的導(dǎo)函數(shù)f′(x),f′(x)在區(qū)間(a,b)的導(dǎo)函數(shù)f″(x),若在區(qū)間(a,b)上的f″(x)<0恒成立,則稱函數(shù)f(x)在區(qū)間(a,b)上為“凸函數(shù)”,已知f(x)=
1
12
x4-
1
6
mx3-
3
2
x2
,若當(dāng)實數(shù)m滿足|m|≤2時,函數(shù)f(x)在區(qū)間(a,b)上為“凸函數(shù)”,則b-a的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖南模擬)已知函數(shù)f(x)=
-x-1(x<-2)
x+3(-2≤x≤
1
2
)
5x+1(x>
1
2
)
(x∈R),
(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)已知m∈R,命題p:關(guān)于x的不等式f(x)≥m2+2m-2對任意x∈R恒成立;命題q:函數(shù)y=(m2-1)x是增函數(shù).若“p或q”為真,“p且q”為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖南模擬)設(shè)曲線y=xn+1(n∈N)在點(1,1)處的切線與x軸的交點的橫坐標(biāo)為xn,則x1•x2•x3•…•x2012的值為
1
2013
1
2013

查看答案和解析>>

同步練習(xí)冊答案