3.如果一個正四面體的體積為$\frac{16}{3}\sqrt{2}$dm3,則其表面積S的值為( 。
A.16dm2B.18 dm2C.$18\sqrt{3}$dm2D.$16\sqrt{3}$dm2

分析 根據(jù)棱長為a的正四面體的體積V=$\frac{\sqrt{2}}{12}$a3,求出棱長,再由棱長為a的正四面體的表面積S=$\sqrt{3}$a2,可得答案.

解答 解:如果一個正四面體的棱長為a.
則體積V=$\frac{\sqrt{2}}{12}$a3=$\frac{16}{3}\sqrt{2}$dm3,
故a=4dm,
則其表面積S=$\sqrt{3}$a2=$16\sqrt{3}$dm2,
故選:D

點(diǎn)評 本題考查的知識點(diǎn)是正四面體的幾何特征,熟練掌握棱長為a的正四面體的體積V=$\frac{\sqrt{2}}{12}$a3,表面積S=$\sqrt{3}$a2,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知冪函數(shù)y=x3m-9(m∈N*)的圖象關(guān)于y軸對稱,且在(0,+∞)上函數(shù)值隨x增大而減。
(1)求m的值; 
(2)求滿足(a+1)${\;}^{-\frac{m}{3}}}$<(3-2a)${\;}^{-\frac{m}{3}}}$的a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=kx(k≠0),且滿足f(x+1)•f(x)=x2+x,
( I)求函數(shù)f(x)的解析式;
( II)若函數(shù)f(x)為R上的增函數(shù),h(x)=$\frac{f(x)+1}{f(x)-1}$(f(x)≠1),問是否存在實(shí)數(shù)m使得h(x)的定義域和值域都為[m,m+1]?若存在,求出m的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)M={x|0≤x≤2},N={y|0≤y≤2},給出下列四個圖形:

其中,能表示從集合M到集合N的函數(shù)關(guān)系的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知△ABP的三個頂點(diǎn)都在拋物線C:x2=4y上,P在第一象限,如圖.F為拋物線C的焦點(diǎn),點(diǎn)M為AB的中點(diǎn),$\overrightarrow{PF}$=3$\overrightarrow{FM}$,|PF|=3,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.雙曲線C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的實(shí)軸長度為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知圓x2+y2=5與直線2x-y-m=0相交于不同的A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求m的取值范圍;
(2)若OA⊥OB,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)$\overrightarrow{a}$=(-2,3),|$\overrightarrow{a}$|=$\frac{1}{2}$|$\overrightarrow$|,且$\overrightarrow{a}$、$\overrightarrow$同向,則$\overrightarrow$的坐標(biāo)為(-4,6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.一個等差數(shù)列共有10項(xiàng),其中偶數(shù)項(xiàng)的和為15,則這個數(shù)列的第6項(xiàng)是( 。
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊答案