【題目】201971日到3日,世界新能源汽車大會(huì)在海南博鰲召開,大會(huì)著眼于全球汽車產(chǎn)業(yè)的轉(zhuǎn)型升級(jí)和生態(tài)環(huán)境的持續(xù)改善.某汽車公司順應(yīng)時(shí)代潮流,最新研發(fā)了一款新能源汽車,并在出廠前對(duì)100輛汽車進(jìn)行了單次最大續(xù)航里程(理論上是指新能源汽車所裝載的燃料或電池所能夠提供給車行駛的最遠(yuǎn)里程)的測(cè)試.現(xiàn)對(duì)測(cè)試數(shù)據(jù)進(jìn)行分析,得到如圖的頻率分布直方圖.

1)估計(jì)這100輛汽車的單次最大續(xù)航里程的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);

2)根據(jù)大量的汽車測(cè)試數(shù)據(jù),可以認(rèn)為這款汽車的單次最大續(xù)航量程X近似地服從正態(tài)分布,經(jīng)計(jì)算第(1)問中樣本標(biāo)準(zhǔn)差s的近似值為50.用樣本平均數(shù)作為的近似值,用樣本標(biāo)準(zhǔn)差s作為的估計(jì)值,現(xiàn)任取一輛汽車,求它的單次最大續(xù)航里程恰在250千米到400千米之間的概率;

3)某汽車銷售公司為推廣此款新能源汽車,現(xiàn)面向意向客戶推出玩游戲,送大獎(jiǎng)活動(dòng),客戶可根據(jù)拋擲硬幣的結(jié)果,操控微型遙控車在方格圖上行進(jìn),若遙控車最終停在勝利大本營(yíng),則可獲得購車優(yōu)惠券.已知硬幣出現(xiàn)正,反面的概率都是,方格圖上標(biāo)有第0格、第1格、第2……50格.遙控車開始在第0格,客戶每擲一次硬幣,遙控車向前移動(dòng)一次,若擲出正面,遙控車向前移動(dòng)一格(從k),若擲出反面,遙控車向前移動(dòng)兩格(從k),直到遙控車移到第49格(勝利大本營(yíng))或第50格(失敗大本營(yíng))時(shí),游戲結(jié)束.設(shè)遙控車移到第n格的概率為,試證明是等比數(shù)列,并解釋此方案能否成功吸引顧客購買該款新能源汽車.

參考數(shù)據(jù):若隨機(jī)變量服從正態(tài)分布,則,

【答案】1300;(2;(3)見解析.

【解析】

1)利用頻率分布直方圖的平均數(shù)的計(jì)算方法即可得出

2)由.利用正態(tài)分布的對(duì)稱性可得

3)遙控車移到第格的情況是下面兩種,而且只有兩種:①遙控車先到第格,又?jǐn)S出反面,其概率為.②遙控車先到第格,又?jǐn)S出正面,其概率為.可得:,即可得證數(shù)列是等比數(shù)列,并計(jì)算獲勝與失敗的概率.

1

(千米).

2)由

3)遙控車開始在第0格為必然事件,

第一次擲硬幣出現(xiàn)正面,遙控車移到第一格,其概率為,即

遙控車移到第格的情況是下面兩種,而且只有兩種:

①遙控車先到第格,又?jǐn)S出反面,其概率為

②遙控車先到第格,又?jǐn)S出正面,其概率為

時(shí),數(shù)列是等比數(shù)列,

首項(xiàng)為,公比為的等比數(shù)列.

,

,……

∴獲勝的概率,

失敗的概率

∴獲勝的概率大.

∴此方案能成功吸引顧客購買該款新能源汽車.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖兩個(gè)同心球,球心均為點(diǎn),其中大球與小球的表面積之比為3:1,線段是夾在兩個(gè)球體之間的內(nèi)弦,其中兩點(diǎn)在小球上,兩點(diǎn)在大球上,兩內(nèi)弦均不穿過小球內(nèi)部.當(dāng)四面體的體積達(dá)到最大值時(shí),此時(shí)異面直線的夾角為,則

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于很多人來說,提前消費(fèi)的認(rèn)識(shí)首先是源于信用卡,在那個(gè)工資不高的年代,信用卡絕對(duì)是神器,稍微大件的東西都是可以選擇用信用卡來買,甚至于分期買,然后慢慢還!現(xiàn)在銀行貸款也是很風(fēng)靡的,從房貸到車貸到一般的現(xiàn)金貸.信用卡忽如一夜春風(fēng)來,遍布了各大小城市的大街小巷.為了解信用卡在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了100人進(jìn)行抽樣分析,得到如下列聯(lián)表(單位:人)

經(jīng)常使用信用卡

偶爾或不用信用卡

合計(jì)

40歲及以下

15

35

50

40歲以上

20

30

50

合計(jì)

35

65

100

1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為市使用信用卡情況與年齡有關(guān)?

2)①現(xiàn)從所抽取的40歲及以下的網(wǎng)民中,按經(jīng)常使用偶爾或不用這兩種類型進(jìn)行分層抽樣抽取10人,然后,再從這10人中隨機(jī)選出4人贈(zèng)送積分,求選出的4人中至少有3人偶爾或不用信用卡的概率;

②將頻率視為概率,從市所有參與調(diào)查的40歲以上的網(wǎng)民中隨機(jī)抽取3人贈(zèng)送禮品,記其中經(jīng)常使用信用卡的人數(shù)為,求隨機(jī)變量的分布列、數(shù)學(xué)期望和方差.

參考公式:,其中

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是兩個(gè)非零平面向量,則有

①若

②若,

③若則存在實(shí)數(shù),使得

④若存在實(shí)數(shù)使得,四個(gè)命題中真命題的序號(hào)為 __________.(填寫所有真命題的序號(hào))

【答案】①③④

【解析】逐一考查所給的結(jié)論:

①若,則,據(jù)此有:,說法①正確;

②若,則,

,說法②錯(cuò)誤;

③若,則,據(jù)此有:,

由平面向量數(shù)量積的定義有:

則向量反向,故存在實(shí)數(shù),使得,說法③正確;

④若存在實(shí)數(shù),使得,則向量與向量共線,

此時(shí),

若題中所給的命題正確,則

該結(jié)論明顯成立.即說法④正確;

綜上可得:真命題的序號(hào)為①③④.

點(diǎn)睛:處理兩個(gè)向量的數(shù)量積有三種方法:利用定義;利用向量的坐標(biāo)運(yùn)算;利用數(shù)量積的幾何意義.具體應(yīng)用時(shí)可根據(jù)已知條件的特征來選擇,同時(shí)要注意數(shù)量積運(yùn)算律的應(yīng)用.

型】填空
結(jié)束】
17

【題目】已知在,,.

(1)求角的大小;

(2)設(shè)數(shù)列滿足項(xiàng)和為,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】依據(jù)某地某條河流8月份的水文觀測(cè)點(diǎn)的歷史統(tǒng)計(jì)數(shù)據(jù)所繪制的頻率分布直方圖如圖(甲)所示;依據(jù)當(dāng)?shù)氐牡刭|(zhì)構(gòu)造,得到水位與災(zāi)害等級(jí)的頻率分布條形圖如圖(乙)所示.

試估計(jì)該河流在8月份水位的中位數(shù);

1)以此頻率作為概率,試估計(jì)該河流在8月份發(fā)生1級(jí)災(zāi)害的概率;

2)該河流域某企業(yè),在8月份,若沒受1、2級(jí)災(zāi)害影響,利潤(rùn)為500萬元;若受1級(jí)災(zāi)害影響,則虧損100萬元;若受2級(jí)災(zāi)害影響則虧損1000萬元.

現(xiàn)此企業(yè)有如下三種應(yīng)對(duì)方案:

方案

防控等級(jí)

費(fèi)用(單位:萬元)

方案一

無措施

0

方案二

防控1級(jí)災(zāi)害

40

方案三

防控2級(jí)災(zāi)害

100

試問,如僅從利潤(rùn)考慮,該企業(yè)應(yīng)選擇這三種方案中的哪種方案?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線D的極坐標(biāo)方程為.

1)寫出曲線C的極坐標(biāo)方程以及曲線D的直角坐標(biāo)方程;

2)若過點(diǎn)(極坐標(biāo))且傾斜角為的直線l與曲線C交于M,N兩點(diǎn),弦MN的中點(diǎn)為P,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京地鐵八通線西起四惠站,東至土橋站,全長(zhǎng)18.964km,共設(shè)13座車站.目前八通線執(zhí)行2014年12月28日制訂的計(jì)價(jià)標(biāo)準(zhǔn),各站間計(jì)程票價(jià)(單位:元)如下:

四惠

3

3

3

3

4

4

4

5

5

5

5

5

四惠東

3

3

3

4

4

4

5

5

5

5

5

高碑店

3

3

3

4

4

4

4

5

5

p>5

傳媒大學(xué)

3

3

3

4

4

4

4

5

5

雙橋

3

3

3

4

4

4

4

4

管莊

3

3

3

3

4

4

4

八里橋

3

3

3

3

4

4

通州北苑

3

3

3

3

3

果園

3

3

3

3

九棵樹

3

3

3

梨園

/p>

3

3

臨河里

3

土橋

四惠

四惠東

高碑店

傳媒大學(xué)

雙橋

管莊

八里橋

通州北苑

果園

九棵樹

梨園

臨河里

土橋

(Ⅰ)在13座車站中任選兩個(gè)不同的車站,求兩站間票價(jià)不足5元的概率;

(Ⅱ)甲乙二人從四惠站上車乘坐八通線,各自任選另一站下車(二人可同站下車),記甲乙二人乘車購票花費(fèi)之和為X元,求X的分布列;

(Ⅲ)若甲乙二人只乘坐八通線,甲從四惠站上車,任選另一站下車,記票價(jià)為元;乙從土橋站上車,任選另一站下車,記票價(jià)為元.試比較的方差大。ńY(jié)論不需要證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐,,在平行四邊形中,,Q上的點(diǎn),過的平面分別交,于點(diǎn)EF,且平面.

1)證明:

2)若,Q的中點(diǎn),與平面所成角的正弦值為,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是梯形,,,側(cè)面底面

1)求證:平面平面;

2)若,且三棱錐的體積為,求側(cè)面的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案