18.已知x,y滿足約束條件$\left\{\begin{array}{l}x-y+5≤0\\ x+y≥0\\ y≤3\end{array}$,則z=4x+2y的最小值是(  )
A.-8B.-6C.-5D.-2

分析 作出不等式組對應的平面區(qū)域,利用z的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.

解答 解:作出不等式組對應的平面區(qū)域如圖:
由z=4x+2y得y=-2x+$\frac{z}{2}$,
平移直線y=-2x+$\frac{z}{2}$,
由圖象可知當直線y=-2x+$\frac{z}{2}$經(jīng)過點A時,
直線y=-2x+$\frac{z}{2}$的截距最小,此時z最小,
由$\left\{\begin{array}{l}{y=3}\\{x+y=0}\end{array}\right.$,解得A(-3,3),
此時z=-4×3+2×3=-6,
故選:B.

點評 本題主要考查線性規(guī)劃的應用,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知y=f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=x2-2x.
(1)畫出f(x)的簡圖,并求f(x)的解析式;
(2)利用圖象討論方程f(x)=k的根的情況.(只需寫出結(jié)果,不要解答過程).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.4${\;}^{\frac{1}{2}}$+log4$\frac{1}{2}$等于( 。
A.0B.1C.$\frac{3}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,AB為圓O的直徑,過點B作圓O的切線BC,任取圓O上異于A、B的一點E,連接AE并延長交BC于點C,過點E作圓O的切線,交邊BC于一點D.
(Ⅰ)求證:OD∥AC;
(Ⅱ)若OD交圓O于一點M,且∠A=60°,求$\frac{OM}{OD}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若存在實常數(shù)k和b,使得函數(shù)F(x)和G(x)對其公共定義域上的任意實數(shù)x都滿足:F(x)≥kx+b和G(x)≤kx+b恒成立,則稱此直線y=kx+b為F(x)和G(x)的“隔離直線”,已知函數(shù)f(x)=x2(x∈R),g(x)=$\frac{1}{x}$(x<0),h(x)=2elnx,有下列命題:
①F(x)=f(x)-g(x)在$x∈({-\frac{1}{{\root{3}{2}}},0})$內(nèi)單調(diào)遞增;
②f(x)和g(x)之間存在“隔離直線”,且b的最小值為-4;
③f(x)和g(x)之間存在“隔離直線”,且k的取值范圍是(-4,0];•
④f(x)和h(x)之間存在唯一的“隔離直線”y=2$\sqrt{e}$x-e.
其中真命題為①②④(請?zhí)钏姓_命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.(Ⅰ)命題“?x∈R,x2-3ax+9>0”為真命題,求實數(shù)a的取值范圍;
(Ⅱ)若“x2+2x-8<0”是“x-m>0”的充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知點O,A,B不在同一條直線上,點P為該平面上一點,且$\overrightarrow{OP}=2\overrightarrow{OA}-\overrightarrow{OB}$,則( 。
A.點P在線段AB上B.點P在線段AB的反向延長線上
C.點P在線段AB的延長線上D.點P不在直線AB上

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)$f(x)=\frac{1}{{\sqrt{x-2}}}-\sqrt{x-5}$,則函數(shù)的定義域為[5,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)$y=sin({-2x+\frac{π}{6}}),x∈R$
(1)求函數(shù)的最小正周期;
(2)求函數(shù)的最大值及其對應的x的值;
(3)寫出函數(shù)的單調(diào)增區(qū)間.

查看答案和解析>>

同步練習冊答案