設橢圓ax2+by2=1與直線x+y=1相交于A、B兩點,且|AB|=2.又AB的中點M與橢圓中心連線的斜率為,求橢圓的方程.
橢圓方程為+y2=1.
將橢圓方程與直線方程聯(lián)立,消去y并整理得(a+b)x2-2bx+b-1=0.
設A(x1,y1)、B(x2,y2),
則x1+x2=,x1x2=.
∴|AB|=|x1-x2|
=·
=2·
=,
y1+y2=1-x1+1-x2=2-(x1+x2)=,kOM=.
由題意知
解之,得
故所求橢圓方程為+y2=1.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知橢圓C,經過橢圓C的右焦點F且斜率為kk≠0)的直線l交橢圓G于A、B兩點,M為線段AB的中點,設O為橢圓的中心,射線OM交橢圓于N點.

(1)是否存在k,使對任意m>0,總有成立?若存在,求出所有k的值;
(2)若,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

直角坐標系中,O為坐標原點,設直線經過點,且與軸交于
點F(2,0)。
(I)求直線的方程;
(II)如果一個橢圓經過點P,且以點F為它的一個焦點,求橢圓的標準方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,B(– c,0),C(c,0),AH⊥BC,垂足為H,且
(1)若= 0,求以B、C為焦點并且經過點A的橢圓的離心率;
(2)D分有向線段的比為,A、D同在以B、C為焦點的橢圓上,當 ―5≤ 時,求橢圓的離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設P(x,y)是+=1上一點,則x+y的最小值為__________________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線y=x+m與橢圓=1有兩個公共點,則m的取值范圍是(    )
A.(-5,5)B.(-12,12)C.(-13,13)D.(-15,15)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題15分)如圖,橢圓長軸端點為為橢圓中心,為橢圓的右焦點,且,.(1)求橢圓的標準方程;(2)記橢圓的上頂點為,直線交橢圓于兩點,問:是否存在直線,使點恰為的垂心?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓+=1上點P到右焦點的距離…(    )
A.最大值為5,最小值為4
B.最大值為10,最小值為8
C.最大值為10,最小值為6
D.最大值為9,最小值為1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓(φ為參數(shù))的離心率為(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案