直線y=x+m與橢圓=1有兩個(gè)公共點(diǎn),則m的取值范圍是(    )
A.(-5,5)B.(-12,12)C.(-13,13)D.(-15,15)
C
兩個(gè)方程聯(lián)立得
169x2+288mx+144m2-25×144=0.
Δ=(288m)2-4×169×144(m2-25)>0,
即4×122×122m2-4×144×169(m2-25)>0.
化為132×25>(132-122)m2,
解得-13<m<13.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C過點(diǎn)是橢圓的左焦點(diǎn),P、Q是橢圓C上的兩個(gè)動(dòng)點(diǎn),且|PF|、|MF|、|QF|成等差數(shù)列。
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求證:線段PQ的垂直平分線經(jīng)過一個(gè)定點(diǎn)A;
(3)設(shè)點(diǎn)A關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)是B,求|PB|的最小值及相應(yīng)點(diǎn)P的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓ax2+by2=1與直線x+y=1相交于A、B兩點(diǎn),且|AB|=2.又AB的中點(diǎn)M與橢圓中心連線的斜率為,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓=1的焦點(diǎn)為F1、F2,P是橢圓上任意一點(diǎn),一條斜率為的直線交橢圓于A、B兩點(diǎn),如果當(dāng)a變化時(shí),總可同時(shí)滿足:
①∠F1PF2的最大值為;
②直線l:ax+y+1=0平分線段AB.
求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

給定四條曲線:①x2+y2=;②+=1;?③x2+=1;④+y2=1.其中與直線x+y-5=0僅有一個(gè)交點(diǎn)的曲線是(   )
A.①②③B.②③④C.①②④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在橢圓+=1上取三點(diǎn),其橫坐標(biāo)滿足x1+x3=2x2,三點(diǎn)順次與某一焦點(diǎn)連接的線段長是r1、r2、r3,則有(    )
A.r1、r2、r3成等差數(shù)列B.r1、r2、r3成等比數(shù)列
C.、成等差數(shù)列D.、、成等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知不論k為何實(shí)數(shù),直線y=kx+b與橢圓+=1總有公共點(diǎn),則b的取值范?圍是(   )
A.(-5,5)B.[-5,5)C.[-5,5]D.[-5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的短軸的一個(gè)端點(diǎn)到一個(gè)焦點(diǎn)的距離為5,焦點(diǎn)到橢圓中心的距離為3,則橢
圓的標(biāo)準(zhǔn)方程是(    )
A.+=1或+=1
B.+=1或+=1
C.=1或+=1
D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

α∈(0,),方程x2sinα+y2cosα=1表示焦點(diǎn)在y軸上的橢圓,則α的取值范圍是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案