【題目】如圖所示,底面為菱形, , , 平面.

(1)設(shè)交于點(diǎn),求證: 平面;

(2)求多面體的體積.

【答案】(1)見解析;(2) .

【解析】試題分析:1的中點(diǎn),連接,易證得四邊形為平行四邊形,所以,即可證得;

(2)過點(diǎn),分別交^ 于點(diǎn),連接, .的中點(diǎn),連接,交于點(diǎn).由題意知,四邊形為平行四邊形,,結(jié)合平面, 平面,由體積公式求解即可.

試題解析:

1的中點(diǎn),連接.由題意知, 中點(diǎn),∴,

,,則四邊形為平行四邊形,

,平面.

2過點(diǎn),分別交^ 于點(diǎn),連接, .的中點(diǎn),連接,交于點(diǎn).由題意知,四邊形為平行四邊形.

為菱形 ,

為等邊三角形,

.

為等邊三角形 的中點(diǎn),,

平面, ,平面,

.

平面, ,平面,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某校隨機(jī)抽取100名學(xué)生,獲得了他們一周課外閱讀時(shí)間(單位:小時(shí))的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表和頻率分布直方圖:

1)從該校隨機(jī)選取一名學(xué)生,試估計(jì)這名學(xué)生該周課外閱讀時(shí)間少于12小時(shí)的概率;

2)求頻率分布直方圖中的a,b的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解高一實(shí)驗(yàn)班的數(shù)學(xué)成績(jī),采用抽樣調(diào)查的方式,獲取了位學(xué)生在第一學(xué)期末的數(shù)學(xué)成績(jī)數(shù)據(jù),樣本統(tǒng)計(jì)結(jié)果如下表:

分組

頻數(shù)

頻率

合計(jì)

(1)求的值和實(shí)驗(yàn)班數(shù)學(xué)平均分的估計(jì)值;

(2)如果用分層抽樣的方法從數(shù)學(xué)成績(jī)小于分的學(xué)生中抽取名學(xué)生,再從這名學(xué)生中選人,求至少有一個(gè)學(xué)生的數(shù)學(xué)成績(jī)是在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是圓O的直徑,點(diǎn)C是圓上異于A、B的點(diǎn),PO垂直于圓O所在的平面,且POOBBC2,點(diǎn)E在線段PB上,則CE+OE的最小值為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐PABCD中,底面ABCD是菱形,∠BAD60°,ABPA2PA⊥平面ABCD,EPC的中點(diǎn),FAB的中點(diǎn).

1)求證:BE∥平面PDF

2)求證:平面PDF⊥平面PAB;

3)求BE與平面PAC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,直線的極坐標(biāo)方程為,現(xiàn)以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)).

(1)求直線的直角坐標(biāo)方程和曲線的普通方程;

(2)若曲線為曲線關(guān)于直線的對(duì)稱曲線,點(diǎn)分別為曲線、曲線上的動(dòng)點(diǎn),點(diǎn)坐標(biāo)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某動(dòng)物園要為剛?cè)雸@的小動(dòng)物建造一間兩面靠墻的三角形露天活動(dòng)室,地面形狀如圖所示,已知已有兩面墻的夾角為,墻的長(zhǎng)度為米,(已有兩面墻的可利用長(zhǎng)度足夠大),記.

(1)若,求的周長(zhǎng)(結(jié)果精確到0.01米);

(2)為了使小動(dòng)物能健康成長(zhǎng),要求所建的三角形露天活動(dòng)室面積,的面積盡可能大,當(dāng)為何值時(shí),該活動(dòng)室面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若處取得極值,求實(shí)數(shù)的值.

(2)求函數(shù)的單調(diào)區(qū)間.

(3)若上沒有零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角中,, _______,求的周長(zhǎng)的取值范圍.

,,且;

,.

注:這三個(gè)條件中選一個(gè),補(bǔ)充在上面的問題中并對(duì)其進(jìn)行求解,如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.

查看答案和解析>>

同步練習(xí)冊(cè)答案