已知函數(shù)
(1)設(其中的導函數(shù)),求的最大值;
(2)求證: 當時,有
(3)設,當時,不等式恒成立,求的最大值.

(1) 取得最大值;(2);
(3)整數(shù)的最大值是.

解析試題分析:(1)先求,根據(jù)導數(shù)判斷函數(shù)的單調性,再利用單調性求函數(shù)的最大值;
(2)當時,有,再根據(jù)(1)中有,所以;
(3)將不等式先轉化為,再利用導數(shù)求的最小值,因為,結合(1)中的,則
所以函數(shù)上單調遞增.因為,
所以方程上存在唯一實根,且滿足
,即,當,即,
所以函數(shù)上單調遞減,在上單調遞增.
所以
所以.故整數(shù)的最大值是.  
試題解析:(1), 
所以
時,;當時,
因此,上單調遞增,在上單調遞減.
因此,當時,取得最大值;
(2)當時,.由(1)知:當時,,即
因此,有
(3)不等式化為 
所以對任意恒成立.令,
,令,則,
所以函數(shù)上單調遞增.因為
所以方程上存在唯一實根,且滿足
,即,當,即,
所以函數(shù)上單調遞減,在上單調遞增.
所以
所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)若,且對于任意恒成立,試確定實數(shù)的取值范圍;
(Ⅱ)設函數(shù),
求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知關于的函數(shù)
(Ⅰ)當時,求函數(shù)的極值;
(Ⅱ)若函數(shù)沒有零點,求實數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)(其中).
(Ⅰ)若的極值點,求的值;
(Ⅱ)在(Ⅰ)的條件下,解不等式
(Ⅲ)若函數(shù)在區(qū)間上單調遞增,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題13分)己知函數(shù)。
(1)試探究函數(shù)的零點個數(shù);
(2)若的圖象與軸交于兩點,中點為,設函數(shù)的導函數(shù)為, 求證:。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),若時,有極小值
(1)求實數(shù)的取值;
(2)若數(shù)列中,,求證:數(shù)列的前項和;
(3)設函數(shù),若有極值且極值為,則是否具有確定的大小關系?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),.若函數(shù)依次在處取到極值.
(1)求的取值范圍;
(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為常數(shù), e=2.718…,且函數(shù)y=f(x)和y=g(x)的圖像在它們與坐標軸交點處的切線互相平行.
(1)求常數(shù)a的值;
(2)若存在x使不等式>成立,求實數(shù)m的取值范圍;
(3)對于函數(shù)y=f(x)和y=g(x)公共定義域內的任意實數(shù)x0,我們把|f(x0)-g(x0)|的值稱為兩函數(shù)在x0處的偏差.求證:函數(shù)y=f(x)和y=g(x)在其公共定義域內的所有偏差都大于2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù) 
(1)當時,求的單調區(qū)間;
(2)若當恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

同步練習冊答案