20.設(shè)P:方程$\frac{{x}^{2}}{3-a}$+$\frac{{y}^{2}}{1+a}$=1表示橢圓,Q:(a-2)x2+2(a-2)x-4<0對(duì)任意實(shí)數(shù)x恒成立,若P∧Q是真命題,求實(shí)數(shù)a的取值范圍.

分析 求出p為真命題和Q為真命題時(shí)a的取值范圍,再求它們的交集即可.

解答 解:若p為真命題,則$\left\{\begin{array}{l}{3-a>0}\\{1+a>0}\\{3-a≠1+a}\end{array}\right.$,
解得-1<a<3且a≠1;…(3分)
對(duì)于Q:當(dāng)a=2時(shí),-4<0恒成立;…(5分)
當(dāng)a≠2時(shí),則$\left\{\begin{array}{l}{a-2<0}\\{△={4(a-2)}^{2}+16a-2<0}\end{array}\right.$,
解得-2<a<2,
∴Q為真命題時(shí)-2<a≤2;…(9分)
∵P∩Q是真命題,
∴-1<a≤2且a≠1…(10分)

點(diǎn)評(píng) 本題考查了命題真假的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知數(shù)列{an},{bn},其中{an}是首項(xiàng)為3,公差為整數(shù)的等差數(shù)列,且a3>a1+3,a4<a2+5,an=log2bn,則{bn}的前n項(xiàng)和Sn為(  )
A.8(2n-1)B.4(3n-1)C.$\frac{8}{3}({4^n}-1)$D.$\frac{4}{3}({3^n}-1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.拋物線y2=-2px(p>0)的準(zhǔn)線與圓(x-4)2+y2=1相切,則此拋物線上一點(diǎn)P(-3,m)到焦點(diǎn)的距離為( 。
A.2B.6或8C.8D.2或8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.直線x-$\sqrt{3}$y+6=0的傾斜角是(  )
A.60°B.120°C.30°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知集合A={a1,a2,…an}中的元素都是正整數(shù),且a1<a2<…<an,集合A具有性質(zhì)M:對(duì)于任意的x,y∈A(x≠y),都有$|{x-y}|>\frac{xy}{25}$
(Ⅰ)判斷集合{1,2,3,4}是否具有性質(zhì)M
(Ⅱ)求證:$\frac{1}{a_1}-\frac{1}{a_n}≥\frac{n-1}{25}$
(Ⅲ)求集合A中元素個(gè)數(shù)的最大值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,已知圓上是弧AC=弧BD,過點(diǎn)C的圓的切線CE與BA的延長(zhǎng)線交于點(diǎn)E.
(1)求證:∠ACE=∠BCD;
(2)求證:BD2=AE•CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知f(x)=$\frac{1}{3}$x3+bx2+cx(b,c∈R),f′(1)=0,x∈[-1,3]時(shí),曲線y=f(x)的切線斜率的最小值為-1,求b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.復(fù)平面內(nèi)的點(diǎn)A、B、C,A點(diǎn)對(duì)應(yīng)的復(fù)數(shù)為2+i,$\overrightarrow{BA}$對(duì)應(yīng)的復(fù)數(shù)為1+2i,BC對(duì)應(yīng)的復(fù)數(shù)為3-i,則點(diǎn)C對(duì)應(yīng)的復(fù)數(shù)為4-2i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求函數(shù)y=x-ex+1的單調(diào)區(qū)間、極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案