已知p:
x-1x+1
<0
,q:x>a,若p是q的充分條件,則實(shí)數(shù)a的取值范圍是
 
分析:解不等式
x-1
x+1
<0
,得到x的取值范圍,根據(jù)誰小誰充分,誰大誰必要的原則,根據(jù)p是q的充分條件,我們易將問題轉(zhuǎn)化為一個(gè)關(guān)于a的不等式,解不等式即可得到
實(shí)數(shù)a的取值范圍.
解答:解:解不等得
x-1
x+1
<0

{x|-1<x<1}
又∵q:x>a,
若p是q的充分條件,
則{x|-1<x<1}?{x|x>a}
則a≤-1
故答案為:a≤-1
點(diǎn)評:本題考查的知識點(diǎn)是充分條件,其中根據(jù)誰小誰充分,誰大誰必要的原則,將已知問題轉(zhuǎn)化為一個(gè)關(guān)于a的不等式,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知P={(x,y)|y=x+1},Q={(x,y)|y=
x2-1x-1
}
,則集合P與Q的關(guān)系是
Q?P
Q?P

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:
x-1
x+1
>0,命題q:x>1.則命題p是命題q成立的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:
x+1
x-1
≤0
; q:lg(
x+1
+
1-x2
)
有意義,則?p是?q的( 。 條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知p:
x+1
x-1
≤0
; q:lg(
x+1
+
1-x2
)
有意義,則?p是?q的( 。 條件.
A.充分不必要B.必要不充分
C.充要條件D.既不充分也不必要

查看答案和解析>>

同步練習(xí)冊答案