①③④
分析:對(duì)于①,寫(xiě)出否命題進(jìn)行判斷;對(duì)于②,根據(jù)最值是否能取到進(jìn)行判定;對(duì)于③,利用f(1+x)+f(1-x)=0進(jìn)行求解;對(duì)于④,根據(jù)f(x+4)=-
=f(x)可得周期,進(jìn)行判定即可;對(duì)于⑤,根據(jù)賦值法求出所求進(jìn)行判定即可.
解答:對(duì)于①,x,y∈R,若x
2+y
2=0,則x=0或y=0的否命題是若x
2+y
2≠0,則x,y全不為零,不正確,故是假命題,故①正確;
對(duì)于②,函數(shù)y=3
x+3
-x(x<0)的最小值為2此時(shí)3
x=1,此時(shí)x=0,但取不到,故②不正確;
對(duì)于③,函數(shù)f(x)=x
3+ax
2+2的圖象關(guān)于點(diǎn)(1,0)對(duì)稱(chēng),則f(1+x)+f(1-x)=0,解得a=-3,故③正確;
對(duì)于④,∵f(x+2)+
=0,∴f(x+4)=-
=f(x),故函數(shù)y=f(x)是以4為周期的周期函數(shù),故④正確;
對(duì)于⑤,令x=0解得a
0=1,對(duì)等式兩邊取導(dǎo)數(shù)得10(1+x)
9=a
1+2a
2x+3a
3x
2+…+10a
10x
9,
令x=1得a
1+2a
2+3a
3+…+10a
10=10×2
9,∴a
0+a
1+2a
2+3a
3+…+10a
10=10×2
9+1,故不正確;
故答案為:①③④
點(diǎn)評(píng):本題主要考查了命題的真假判斷,以及函數(shù)的周期性,對(duì)稱(chēng)性和二項(xiàng)式定理的應(yīng)用,同時(shí)考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.