【題目】已知,是雙曲線的左、右焦點,點P上異于頂點的點,直線l分別與以,為直徑的圓相切于A,B兩點,若向量,的夾角為,則=___________.

【答案】

【解析】

首先將圖象畫出來,設以PF1,PF2為直徑的圓的圓心分別為C,D,連接AC,BD,過DDEAC于點E,連接CD,易證四邊形ABDE是矩形,根據(jù)幾何關系可得|CE|===5,由可得,又向量的夾角即為的夾角,從而.

如圖,設以PF1PF2為直徑的圓的圓心分別為C,D,連接AC,BD

DDEAC于點E,連接CD,則,

因為直線AB是圓C和圓D的公切線,且切點分別是A,B,

所以ACAB,BDAB,則四邊形ABDE是矩形,所以|AB|=|DE|,|AE|=|BD|.

,,易知|CE|=|AC|-|AE|=|AC|-|BD|=,

根據(jù)雙曲線的定義知,|PF1|-|PF2|=10,所以|CE|=5.

因為,由|可得

|AB|=3,因為向量的夾角即為的夾角,

所以.

故答案為:.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為上一點.

(1)求橢圓的方程;

(2)設分別關于兩坐標軸及坐標原點的對稱點,平行于的直線于異于的兩點.點關于原點的對稱點為.證明:直線軸圍成的三角形是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,長方體的底面為正方形,,,,,是棱的中點,平面與直線相交于點

1)證明:直線平面;

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=Acosωx)(A0ω0,0φπ)的圖象的一個最高點為(),與之相鄰的一個對稱中心為,將fx)的圖象向右平移個單位長度得到函數(shù)gx)的圖象,則(

A.gx)為偶函數(shù)

B.gx)的一個單調遞增區(qū)間為

C.gx)為奇函數(shù)

D.函數(shù)gx)在上有兩個零點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,,,,,側面為等邊三角形.

(Ⅰ)證明:;

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為提高產(chǎn)品質量,某企業(yè)質量管理部門經(jīng)常不定期地對產(chǎn)品進行抽查檢測,現(xiàn)對某條生產(chǎn)線上隨機抽取的100個產(chǎn)品進行相關數(shù)據(jù)的對比,并對每個產(chǎn)品進行綜合評分(滿分100分),將每個產(chǎn)品所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80分及以上的產(chǎn)品為一等品.

1)求圖中的值,并求綜合評分的中位數(shù);

2)用樣本估計總體,視頻率作為概率,在該條生產(chǎn)線中隨機抽取3個產(chǎn)品,求所抽取的產(chǎn)品中一等品數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】南北朝時代的偉大科學家祖暅在數(shù)學上有突出貢獻,他在實踐的基礎上提出祖暅原理:冪勢既同,則積不容異.其含義是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平行平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等,如圖,夾在兩個平行平面之間的兩個幾何體的體積分別為,,被平行于這兩個平面的任意平面截得的兩個截面面積分別為、,則不總相等,不相等的(

A.充分而不必要條件B.必要而不充分條件

C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線C)的焦點為

1)動直線lF點且與拋物線C交于M,N兩點,點My軸的左側,過點M作拋物線C準線的垂線,垂足為M1,點E上,且滿足連接并延長交y軸于點D,的面積為,求拋物線C的方程及D點的縱坐標;

2)點H為拋物線C準線上任一點,過H作拋物線C的兩條切線,,切點為A,B,證明直線過定點,并求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求的單調區(qū)間;

2)當時,記函數(shù),若函數(shù)至少有三個零點,求實數(shù)的取值范圍

查看答案和解析>>

同步練習冊答案