【題目】如圖,長方體的底面為正方形,,,是棱的中點,平面與直線相交于點

1)證明:直線平面

2)求二面角的正弦值.

【答案】1)證明見解析;(2

【解析】

1)推導(dǎo)出,設(shè)點的中點,連接,推導(dǎo)出平面,平面,從而平面平面,由此能證明平面;

2)以為原點,軸,軸,軸,建立空間直角坐標(biāo)系,利用向量法求出二面角的正弦值.

1)證明:平面平面,

平面平面

平面平面,

,由題意得

設(shè)點的中點,連接,

是棱的中點,,

平面,平面

平面,

,

,

平面,平面,

平面,

,

平面平面,

平面,

平面;

2)解:以為原點,軸,軸,軸,建立如圖所示的空間直角坐標(biāo)系,

,

,,

,,,

設(shè)平面的法向量,,

,取,得,

設(shè)平面的法向量,

,取,得

設(shè)二面角的平面角為,

,

二面角的正弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點,離心率為

1)求橢圓的方程;

2)設(shè)直線與橢圓相交于,兩點,若以為鄰邊的平行四邊形的頂點在橢圓上,求證:平行四邊形的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是九江市20194月至20203月每月最低氣溫與最高氣溫(℃)的折線統(tǒng)計圖:已知每月最低氣溫與最高氣溫的線性相關(guān)系數(shù)r0.83,則下列結(jié)論錯誤的是(

A.每月最低氣溫與最高氣溫有較強的線性相關(guān)性,且二者為線性正相關(guān)

B.月溫差(月最高氣溫﹣月最低氣溫)的最大值出現(xiàn)在10

C.912月的月溫差相對于58月,波動性更大

D.每月最高氣溫與最低氣溫的平均值在前6個月逐月增加

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,.,為鄰邊作平行四邊形,連接.

1)求證:平面;

2)線段上是否存在點,使平面與平面垂直?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高二某班共有45人,學(xué)號依次為1、2、3、、45,現(xiàn)按學(xué)號用系統(tǒng)抽樣的辦法抽取一個容量為5的樣本,已知學(xué)號為624、33的同學(xué)在樣本中,那么樣本中還有兩個同學(xué)的學(xué)號應(yīng)為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,PA平面ABCD,在四邊形ABCD中,ABC=,AB=4BC=3,CD=AD=2,PA=4.

1)證明:CD平面PAD;

2)求二面角B-PC-D的余弦值..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)求函數(shù)上的最值;

(Ⅱ)若對,總有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,是雙曲線的左、右焦點,點P上異于頂點的點,直線l分別與以為直徑的圓相切于A,B兩點,若向量,的夾角為,則=___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,斜率為的直線交拋物線兩點,已知點的橫坐標(biāo)比點的橫坐標(biāo)大4,直線交線段于點,交拋物線于點

1)若點的橫坐標(biāo)等于0,求的值;

2)求的最大值.

查看答案和解析>>

同步練習(xí)冊答案